• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., Z. Yan, P. Zhao, Y. Zhu, Y. Yu, G. Tang, and P. Jones, 2017: Climatic warming in China during 1901–2015 based on an extended dataset of instrumental temperature records. Environ. Res. Lett., 12, 064005, https://doi.org/10.1088/1748-9326/aa68e8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and C. Li, 2004: The East Asia winter monsoon. East Asian Monsoon, C. P. Chang, Ed., World Scientific, 54–106, https://doi.org/10.1142/9789812701411_0002.

    • Crossref
    • Export Citation
  • Chen, J., and S. Sun, 1999: East Asian winter monsoon anomaly and variation of global circulation. Part I: A comparison study on strong and weak winter monsoons (in Chinese). Chin. J. Atmos. Sci., 23, 101111.

    • Search Google Scholar
    • Export Citation
  • Chen, W., H.-F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, https://doi.org/10.1007/s00376-000-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Liu, Y. Song, and J. Zhang, 2015: From MONEX to the global monsoon: A review of monsoon system research. Adv. Atmos. Sci., 32, 1031, https://doi.org/10.1007/s00376-014-0008-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, P. Liu, F.-F. Jin, and G. Tan, 2017: Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dyn., 49, 25312544, https://doi.org/10.1007/s00382-016-3465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., K. Wei, and R. H. Huang, 2008: Severe disaster of blizzard, freezing rain and low temperature in January 2008 in China and its association with the anomalies of East Asian monsoon system (in Chinese). Climatic Environ. Res., 13, 405418.

    • Search Google Scholar
    • Export Citation
  • Guo, Q., 1994: Relationship between the variations of East Asian winter monsoon and temperature anomalies in China (in Chinese). Quart. J. Appl. Meteor., 5, 218225.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hao, X., and S. He, 2017: Combined effect of ENSO-like and Atlantic multidecadal oscillation SSTAs on the interannual variability of the East Asian winter monsoon. J. Climate, 30, 26972716, https://doi.org/10.1175/JCLI-D-16-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2012: An integrated East Asian winter monsoon index and its interannual variability (in Chinese). Chin. J. Atmos. Sci., 36, 523538.

    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., X. Xu, T. Furevik, and Y. Gao, 2020: Eurasian cooling linked to the vertical distribution of Arctic warming. Geophys. Res. Lett., 47, e2020GL087212, https://doi.org/10.1029/2020GL087212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726, https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y.-Y., G.-H. Lim, and J.-S. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, https://doi.org/10.1029/2009JD012813.

    • Search Google Scholar
    • Export Citation
  • Li, S., and G. T. Bates, 2007: Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135, https://doi.org/10.1007/s00376-007-0126-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Z. Yan, L. Cao, and P. D. Jones, 2018: Further-adjusted long-term temperature series in China based on MASH. Adv. Atmos. Sci., 35, 909917, https://doi.org/10.1007/s00376-018-7280-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., Z. Kuang, S. Yang, Z. Li, and H. Fan, 2020: A bridging role of winter snow over northern China and southern Mongolia in linking the East Asian winter and summer monsoons. J. Climate, 33, 98499862, https://doi.org/10.1175/JCLI-D-20-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Chen, A. Dai, M. Mu, R. Zhang, and S. Ian, 2017: Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environ. Res. Lett., 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, T., W. Chen, D. Nath, H.-F. Graf, L. Wang, and J. Huangfu, 2018: East Asian winter monsoon impacts the ENSO-related teleconnections and North American seasonal air temperature prediction. Sci. Rep., 8, 6547, https://doi.org/10.1038/s41598-018-24552-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., H. Nakamura, Y. Kosaka, B. Taguchi, and M. Mori, 2020: Modulations of North American and European weather variability and extremes by interdecadal variability of the atmospheric circulation over the North Atlantic sector. J. Climate, 33, 81258146, https://doi.org/10.1175/JCLI-D-19-0977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J. P., and T. Wang, 2020: Decadal variations of the East Asian winter monsoon in recent decades. Atmos. Sci. Lett., 21, e960, https://doi.org/10.1002/asl.960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J. P., T. Wang, H. Wang, Y. Zhu, and J. Sun, 2018: Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: The roles of external forcings. J. Climate, 31, 89859000, https://doi.org/10.1175/JCLI-D-17-0868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J. P., T. Wang, and H. Wang, 2020: Interdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulations. J. Climate, 33, 559575, https://doi.org/10.1175/JCLI-D-19-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., and Coauthors, 2021: An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., C. Frankignoul, and L. Z. X. Li, 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276, https://doi.org/10.1007/s00382-010-0958-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1952: Associated Measurements. Butterworths Scientific Publications, 242 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., J. Lu, and Q. Zhu, 1996: East Asian winter/summer monsoon intensity indices with their climatic change in 1873–1989 (in Chinese). J. Nanjing Inst. Meteor., 19, 168177.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., S. Wu, and J. Ao, 2016: Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Climate Dyn., 46, 37933805, https://doi.org/10.1007/s00382-015-2805-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and K. Fan, 2013: Recent changes in the East Asian monsoon (in Chinese). Chin. J. Atmos. Sci., 37, 313318.

  • Wang, H., and S. P. He, 2013: The increase of snowfall in Northeast China after the mid-1980s (in Chinese). Chin. Sci. Bull., 58, 13501354, https://doi.org/10.1007/s11434-012-5508-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and H. P. Chen, 2016: Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos. Chem. Phys., 16, 42054211, https://doi.org/10.5194/acp-16-4205-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014a: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull., 59, 430436, https://doi.org/10.1007/s11434-013-0029-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014b: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., R. H. Huang, L. Gu, W. Chen, and L. H. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 48604872, https://doi.org/10.1175/2009JCLI2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Li, and D. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res., 114, D02112, https://doi.org/10.1029/2008JD010929.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Q. Zhu, and T. Zhou, 1999: Sudden and periodic changes of East Asian winter monsoon in the past century (in Chinese). Quart. J. Appl. Meteor., 10, 18.

    • Search Google Scholar
    • Export Citation
  • Xu, X., S. He, Y. Gao, B. Zhou, and H. Wang, 2021: Contributors to linkage between Arctic warming and East Asian winter climate. Climate Dyn., https://doi.org/10.1007/s00382-021-05820-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and H. Zhang, 2010: Potential impacts of East Asian winter monsoon on climate variability and predictability in the Australian summer monsoon region. Theor. Appl. Climatol., 101, 161177, https://doi.org/10.1007/s00704-009-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Z. Wang, B. Sun, and X. Hao, 2020: Decadal change of heavy snowfall over northern China in the mid-1990s and associated background circulations. J. Climate, 34, 825837, https://doi.org/10.1175/JCLI-D-19-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., 2011: Impact of East Asian winter monsoon on rainfall over southeastern China and its dynamical process. Int. J. Climatol., 31, 677686, https://doi.org/10.1002/joc.2101.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 156 156 30
Full Text Views 112 112 22
PDF Downloads 153 153 26

Multidecadal Variations in the East Asian Winter Monsoon and Their Relationship with the Atlantic Multidecadal Oscillation since 1850

View More View Less
  • 1 a Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 c CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study investigates the characteristics and physical mechanisms of the multidecadal variations in the East Asian winter (December–February) monsoon (EAWM) since 1850 based on multiple observational and reanalysis datasets. The results indicate that the EAWM undergoes multidecadal weakening during the periods of 1869–1919 and 1986–2004 but strengthening during the period of 1920–85. Similar evolutions can be observed in the time series of the area-averaged winter surface air temperature over East Asia. Associated with the EAWM multidecadal variations, a quasi-barotropic Rossby wave train originating from the subtropical North Atlantic propagating across the Eurasian continent to Northeast Asia also experiences phase shifting at the same time. In its positive phase, the low-level anticyclonic anomaly over the northern Eurasian continent causes a stronger Siberian high; the mid- and high-level cyclonic anomalies over Northeast Asia deepen the East Asian trough and strengthen the East Asian jet stream, respectively. Thus, the positive phase of the wave train is conducive to stronger EAWMs and vice versa. The diagnostic analysis of the Rossby wave source indicates that the upper-tropospheric divergence anomalies over the North Atlantic can favor the excitation of this wave train, and the feedback forcing of high-frequency eddies plays important roles in its maintenance. In addition, the phase shifting of the Atlantic multidecadal oscillation (AMO) can induce a similar Rossby wave train across the Eurasian continent, through which it further modulates the multidecadal variations in the EAWM. Warm phases of the AMO are favorable for a stronger EAWM and colder midlatitude Eurasian continent and vice versa.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jiapeng Miao, miaojiapeng@mail.iap.ac.cn; Dabang Jiang, jiangdb@mail.iap.ac.cn

Abstract

This study investigates the characteristics and physical mechanisms of the multidecadal variations in the East Asian winter (December–February) monsoon (EAWM) since 1850 based on multiple observational and reanalysis datasets. The results indicate that the EAWM undergoes multidecadal weakening during the periods of 1869–1919 and 1986–2004 but strengthening during the period of 1920–85. Similar evolutions can be observed in the time series of the area-averaged winter surface air temperature over East Asia. Associated with the EAWM multidecadal variations, a quasi-barotropic Rossby wave train originating from the subtropical North Atlantic propagating across the Eurasian continent to Northeast Asia also experiences phase shifting at the same time. In its positive phase, the low-level anticyclonic anomaly over the northern Eurasian continent causes a stronger Siberian high; the mid- and high-level cyclonic anomalies over Northeast Asia deepen the East Asian trough and strengthen the East Asian jet stream, respectively. Thus, the positive phase of the wave train is conducive to stronger EAWMs and vice versa. The diagnostic analysis of the Rossby wave source indicates that the upper-tropospheric divergence anomalies over the North Atlantic can favor the excitation of this wave train, and the feedback forcing of high-frequency eddies plays important roles in its maintenance. In addition, the phase shifting of the Atlantic multidecadal oscillation (AMO) can induce a similar Rossby wave train across the Eurasian continent, through which it further modulates the multidecadal variations in the EAWM. Warm phases of the AMO are favorable for a stronger EAWM and colder midlatitude Eurasian continent and vice versa.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jiapeng Miao, miaojiapeng@mail.iap.ac.cn; Dabang Jiang, jiangdb@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 4.23 MB)
Save