• Ao, J., and J. Sun, 2016: Decadal change in factors affecting winter precipitation over eastern China. Climate Dyn., 46, 111121, https://doi.org/10.1007/s00382-015-2572-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., R. Knoche, J. Wei, and H. Kunstmann, 2016: Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa. Water Resour. Res., 52, 15441567, https://doi.org/10.1002/2015WR017704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, W., X. Chen, Y. Tang, Y. He, and Y. Zheng, 2019: Temporal and spatial changes of soil moisture and its response to temperature and precipitation over the Tibetan Plateau. Hydrol. Sci. J., 64, 13701384, https://doi.org/10.1080/02626667.2019.1632459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Y., and Q. You, 2019: How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau? Climate Dyn., 53, 353370, https://doi.org/10.1007/s00382-018-4589-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2003: Climatic change in mountain regions: A review of possible impacts. Climatic Change, 59, 531, https://doi.org/10.1023/A:1024458411589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. Zhang, J. Tao, J. Wu, J. Wang, P. Shi, Y. Zhang, and C. Yu, 2014: The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteor., 189–190, 1118, https://doi.org/10.1016/j.agrformet.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401, https://doi.org/10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su, 2013: Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Climate, 26, 85109, https://doi.org/10.1175/JCLI-D-11-00738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Oliveira, V. A., C. R. de Mello, M. R. Viola, and R. Srinivasan, 2017: Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, southeastern Brazil. Int. J. Climatol., 37, 50055023, https://doi.org/10.1002/joc.5138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., J. Zhai, Y. Zhao, H. Li, Q. Wang, S. Jiang, H. Chang, and Z. Ding, 2020: Teleconnection patterns of precipitation in the Three-River Headwaters region, China. Environ. Res. Lett., 15, 104050, https://doi.org/10.1088/1748-9326/aba8c0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., Z. X. Shen, and X. Z. Zhang, 2018: Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agric. For. Meteor., 249, 1121, https://doi.org/10.1016/j.agrformet.2017.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. Wang, and S. Li, 2013: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res., 118, 35343544, https://doi.org/10.1002/jgrd.50290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and C. Wang, 2014: Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J. Hydrol., 517, 826835, https://doi.org/10.1016/j.jhydrol.2014.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and Z. M. Tan, 2018: The Hadley circulation regime change: Combined effect of the western Pacific warming and increased ENSO amplitude. J. Climate, 31, 97399751, https://doi.org/10.1175/JCLI-D-18-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, M., D. Rayner, and D. Chen, 2010: Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus, 62A, 605616, https://doi.org/10.1111/j.1600-0870.2010.00456.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadley, G., 1735: VI. Concerning the cause of the general trade-winds. Philos. Trans. Roy. Soc. London, 39, 5862, https://doi.org/10.1098/rstl.1735.0014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., H. Wang, and J. Sun, 2017: Strengthened relationship between eastern ENSO and summer precipitation over northeastern China. J. Climate, 30, 44974512, https://doi.org/10.1175/JCLI-D-16-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., M. Zhang, B. Zhou, X. Hao, and S. Li, 2020: Strengthened relationship between tropical west Pacific and midsummer precipitation over northeast China after the mid-1990s. J. Climate, 33, 68336848, https://doi.org/10.1175/JCLI-D-19-0957.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Global Physical Climatology. Elsevier, 498 pp.

  • He, S., Y. Gao, F. Li, H. Wang, and Y. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev., 164, 4862, https://doi.org/10.1016/j.earscirev.2016.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and D. O. Staley, 1973: An introduction to dynamic meteorology. Amer. J. Phys., 41, 752754, https://doi.org/10.1119/1.1987371.

  • Hu, J., and A. Duan, 2015: Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon. Climate Dyn., 45, 26972711, https://doi.org/10.1007/s00382-015-2503-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., A. Dai, J. Zhu, Y. Zhang, and X. Kuang, 2017: Recent winter precipitation changes over eastern China in different warming periods and the associated East Asian jets and oceanic conditions. J. Climate, 30, 44434462, https://doi.org/10.1175/JCLI-D-16-0517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. Chen, and F. Chen, 2015: Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, C., and L. Zhang, 2016: Ecosystem change assessment in the Three-River Headwater region, China: Patterns, causes, and implications. Ecol. Eng., 93, 2436, https://doi.org/10.1016/j.ecoleng.2016.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, C., D. Li, Y. Gao, W. Liu, and L. Zhang, 2017: Impact of climate variability and anthropogenic activity on streamflow in the Three Rivers Headwater Region, Tibetan Plateau, China. Theor. Appl. Climatol., 129, 667681, https://doi.org/10.1007/s00704-016-1833-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Export Citation
  • Kang, S., Y. Xu, Q. You, W. A. Flügel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18, 172191, https://doi.org/10.1175/1520-0469(1961)018<0172:TSJSOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. Lim, 1984: On the dynamics of equatorial forcing of climate teleconnections. J. Atmos. Sci., 41, 161176, https://doi.org/10.1175/1520-0469(1984)041<0161:OTDOEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Y. Zhang, Z. Xu, J. Teng, C. Liu, W. Liu, and F. Mpelasoka, 2013: The impact of climate change on runoff in the southeastern Tibetan Plateau. J. Hydrol., 505, 188201, https://doi.org/10.1016/j.jhydrol.2013.09.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, P., T. Zhou, and X. Chen, 2018: Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Climate Dyn., 51, 4243–4257, https://doi.org/10.1007/s00382-017-3680-3.

    • Search Google Scholar
    • Export Citation
  • Li, X., G. Brierley, D. Shi, Y. Xie, and H. Sun, 2012: Ecological protection and restoration in Sanjiangyuan National Nature Reserve, Qinghai Province, China. Perspectives on Environmental Management and Technology in Asian River Basins, D. Higgitt, Ed., Springer, 93–120.

    • Crossref
    • Export Citation
  • Liang, L., L. Li, C. Liu, and L. Cuo, 2013: Climate change in the Tibetan Plateau Three Rivers Source Region: 1960–2009. Int. J. Climatol., 33, 29002916, https://doi.org/10.1002/joc.3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., K. Yang, J. Qin, and R. Fu, 2013: Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Climate, 26, 28912903, https://doi.org/10.1175/JCLI-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., P. Willems, X. L. Pan, A. M. Bao, X. Chen, F. Veroustraete, and Q. H. Dong, 2011: Climate change impact on water resource extremes in a headwater region of the Tarim Basin in China. Hydrol. Earth Syst. Sci., 15, 35113527, https://doi.org/10.5194/hess-15-3511-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Z. Cheng, L. Yan, and Z.-Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet. Change, 68, 164174, https://doi.org/10.1016/j.gloplacha.2009.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., J. Zhang, X. Zhu, Y. Pan, Y. Liu, D. Zhang, and Z. Lin, 2014: Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J. Geogr. Sci., 24, 288302, https://doi.org/10.1007/s11442-014-1088-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and T. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 30973118, https://doi.org/10.1175/JCLI-D-15-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., M. Lu, H. Chen, M. Pan, and Y. Hong, 2018: Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmos. Res., 209, 5058, https://doi.org/10.1016/j.atmosres.2018.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’Donnell, A. F. Hamlet, and D. P. Lettenmaier, 2001: Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50, 143175, https://doi.org/10.1023/A:1010616428763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, https://doi.org/10.1029/2008GL034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and et al. , 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424–430, https://doi.org/10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/s10584-009-9733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., and J. R. Miller, 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, https://doi.org/10.1007/s10584-012-0419-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, https://doi.org/10.1029/2009GL037245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 39–57, https://doi.org/10.1002/joc.3370010106.

  • Schneider, U., M. Ziese, A. Meyer-Christoffer, P. Finger, E. Rustemeier, and A. Becker, 2016: The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. Proc. IAHS, 374, 29–34, https://doi.org/10.5194/piahs-374-29-2016.

    • Crossref
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Q., W. Cao, J. Fan, L. Huang, and X. Xu, 2017: Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci., 27, 183–204, https://doi.org/10.1007/s11442-017-1371-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, M., Y. Tang, J. Chen, X. Zhu, and Y. Zheng, 2011: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteor., 151, 17111722, https://doi.org/10.1016/j.agrformet.2011.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., T. Li, J. Wei, W. Fu, and G. Wang, 2016: Spatial and temporal characteristics of precipitation over the Three-River Headwaters region during 1961–2014. J. Hydrol. Reg. Stud., 6, 5265, https://doi.org/10.1016/j.ejrh.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., S. W. Yeh, J. Schmetz, and H. J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 1721–1732, https://doi.org/10.1007/s00382-012-1484-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Ueno, 2010: Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. J. Geophys. Res., 115, D16105, https://doi.org/10.1029/2009JD013609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2019: Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Climate Dyn., 52, 3471–3488, https://doi.org/10.1007/s00382-018-4326-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., K. Yang, W. Guo, Y. Wang, J. He, and H. Lu, 2020: Why has the inner Tibetan Plateau become wetter since the mid-1990s? J. Climate, 33, 85078522, https://doi.org/10.1175/JCLI-D-19-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265–285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, L., X. Xu, Y. Fu, and S. Li, 2014: Wetland changes and their responses to climate change in the “Three-River Headwaters” region of China since the 1990s. Energies, 7, 25152534, https://doi.org/10.3390/en7042515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and Y. Guo, 2012: Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau: Changing characteristics with global warming. Hydrol. Processes, 26, 1509–1516 https://doi.org/10.1002/hyp.8246.

    • Crossref
    • Export Citation
  • Wang, C., W. Dong, and Z. Wei, 2002: Anomaly feature of seasonal frozen soil variations on the Qinghai-Tibet Plateau. J. Geogr. Sci., 12, 99107, https://doi.org/10.1007/BF02837433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, S. Yang, and K. Ullah, 2017: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res., 122, 614630, https://doi.org/10.1002/2016JD025515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., R. Wu, P. Zhao, S. L. Yao, and X. Jia, 2019: Formation of snow cover anomalies over the Tibetan Plateau in cold seasons. J. Geophys. Res., 124, 48734890, https://doi.org/10.1029/2018JD029525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2004: The elementary Hadley circulation. The Hadley Circulation: Past, Present and Future, H. Diaz and R. Bradley, Eds., Cambridge University Press, 9–60.

    • Crossref
    • Export Citation
  • Wei, J., H. R. Knoche, and H. Kunstmann, 2015: Contribution of transpiration and evaporation to precipitation: An ET-tagging study for the Poyang Lake region in Southeast China. J. Geophys. Res., 120, 68456864, https://doi.org/10.1002/2014JD022975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys., 56, 1102–1111, https://doi.org/10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Wu, M., T. Zhou, X. Chen, and B. Wu, 2020: Intermodel uncertainty in the projection of the anomalous western North Pacific anticyclone associated with El Niño under global warming. Geophys. Res. Lett., 47, e2019GL086139, https://doi.org/10.1029/2019GL086139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and T. Zhang, 2008: Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res., 113, D13108, https://doi.org/10.1029/2007JD009539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., I. L. Kinter, and B. P. Kirtman, 2005: Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis, objective analyses, and observations. J. Climate, 18, 30483067, https://doi.org/10.1175/JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xi, Y., C. Miao, J. Wu, Q. Duan, X. Lei, and H. Li, 2018: Spatiotemporal changes in extreme temperature and precipitation events in the Three-Rivers Headwater region, China. J. Geophys. Res., 123, 58275844, https://doi.org/10.1029/2017JD028226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., S. Kang, Q. Zhao, and J. Li, 2016: Terrestrial water storage changes of permafrost in the three-river source region of the Tibetan Plateau, China. Adv. Meteor., 2016, 4364738, https://doi.org/10.1155/2016/4364738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., S. Kang, X. Chen, H. Wu, X. Wang, and Z. Su, 2018: Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ., 639, 12201232, https://doi.org/10.1016/j.scitotenv.2018.05.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z. X., T. L. Gong, and J. Y. Li, 2008: Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Processes, 22, 3056–3065, https://doi.org/10.1002/hyp.6892.

    • Crossref
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 79–91, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and et al. , 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, X., G. Li, and Y. Yin, 2013: Spatio-temporal variation of precipitation in the Three-River Headwater Region from 1961 to 2010. J. Geogr. Sci., 23, 447464, https://doi.org/10.1007/s11442-013-1021-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., J. Min, Y. Jiao, M. Sillanpää, and S. Kang, 2016: Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int. J. Climatol., 36, 2633–2643, https://doi.org/10.1002/joc.4517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and et al. , 2020: Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Sci. Rev., 201, 103043, https://doi.org/10.1016/j.earscirev.2019.103043.

    • Crossref
    • Export Citation
  • Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46, 36323652, https://doi.org/10.1175/1520-0469(1989)046<3632:EOZFOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., F. Su, D. Yang, Z. Hao, and K. Tong, 2013: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos., 118, 85008518, https://doi.org/10.1002/jgrd.50665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Zhang, X. Zhai, and J. Xia, 2012: Runoff variation and its response to climate change in the Three Rivers Source Region. J. Geogr. Sci., 22, 781794, https://doi.org/10.1007/s11442-012-0963-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Arnault, S. Wagner, P. Laux, and H. Kunstmann, 2019: Impact of lateral terrestrial water flow on land–atmosphere interactions in the Heihe river basin in China: Fully coupled modeling and precipitation recycling analysis. J. Geophys. Res., 124, 84018423, https://doi.org/10.1029/2018JD030174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., Z. Zhou, and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 39423955, https://doi.org/10.1175/JCLI4205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J. Han, Y. Huang, S. R. Fassnacht, S. Xie, E. Lv, and M. Chen, 2018: Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecol. Indic., 92, 1829, https://doi.org/10.1016/j.ecolind.2017.06.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 1051–1066, https://doi.org/10.1002/joc.4400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., P. Zhao, and J. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 41034119, https://doi.org/10.1175/JCLI-D-18-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., Y. Zhou, S. Wang, L. Wang, F. Wang, W. Liu, and B. Guo, 2015: Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess., 187, 355, https://doi.org/10.1007/s10661-015-4523-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 184 184 84
Full Text Views 45 45 25
PDF Downloads 54 54 31

Associated Atmospheric Mechanisms for the Increased Cold Season Precipitation over the Three-River Headwaters Region from the Late 1980s

View More View Less
  • 1 a Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
  • | 2 b Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
  • | 3 c Key Laboratory of Arid Climate Change and Reduction of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
  • | 4 d National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 5 e Key Laboratory of Ecohydrology of Inland River Basins, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
  • | 6 f Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, China
  • | 7 g Institute of Geography, University of Augsburg, Augsburg, Germany
  • | 8 h State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
  • | 9 i Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing, China
  • | 10 j Institute of Geography, Fujian Normal University, Fuzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Precipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October–April) are still not fully understood. In this study, the daily China gridded precipitation product CN05.1 as well as the NCEP–NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade−1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo–western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation, which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia subtropical westerly jet may contribute to the enhanced divergence at upper levels and anomalous ascending motion above the TRH region, leading to more precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Gaofeng Zhu, zhugf@lzu.edu.cn; Jianhui Wei, jianhui.wei@kit.edu

Abstract

Precipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October–April) are still not fully understood. In this study, the daily China gridded precipitation product CN05.1 as well as the NCEP–NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade−1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo–western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation, which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia subtropical westerly jet may contribute to the enhanced divergence at upper levels and anomalous ascending motion above the TRH region, leading to more precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Gaofeng Zhu, zhugf@lzu.edu.cn; Jianhui Wei, jianhui.wei@kit.edu

Supplementary Materials

    • Supplemental Materials (PDF 805.83 KB)
Save