Interannual Relationship between the West Asian and East Asian Jet Meridional Displacements in Summer

Xiaowei Hong Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
KLME and CIC-FEMD, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaowei Hong in
Current site
Google Scholar
PubMed
Close
,
Riyu Lu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
, and
Shuanglin Li Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China
Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Shuanglin Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The meridional displacements of the upper-tropospheric westerly jet streams over both West Asia and East Asia (WJMD and EJMD, respectively) in summer manifest as the leading pattern of the zonal wind anomalies over their local domains on the interannual time scale. This study identifies a significant interannual relationship between these two leading patterns, tending to displace in the same meridional direction, either northward or southward. It is shown that the Silk Road pattern, which is a zonal teleconnection pattern along the Asian jet, is an important modulator for the WJMD–EJMD relationship. Another factor is the precipitation anomalies over a broad tropical region, including the Indian subcontinent, the northern Indian Ocean, and the western North Pacific Ocean. Enhanced or suppressed tropical precipitation respectively induces a northward or southward displacement of the primary body of the jet stream from West Asia to East Asia, which contributes to the in-phase WJMD–EJMD relationship, as suggested by both the observations and simple model results. The SST anomalies associated with the tropical precipitation and in-phase WJMD–EJMD relationship are also discussed. The WJMD–EJMD relationship may have an important implication for identifying and explaining the teleconnections of rainfall and temperature over the broad area from West Asia to East Asia, and from the tropics to the extratropics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaowei Hong, hongxw@mail.iap.ac.cn

Abstract

The meridional displacements of the upper-tropospheric westerly jet streams over both West Asia and East Asia (WJMD and EJMD, respectively) in summer manifest as the leading pattern of the zonal wind anomalies over their local domains on the interannual time scale. This study identifies a significant interannual relationship between these two leading patterns, tending to displace in the same meridional direction, either northward or southward. It is shown that the Silk Road pattern, which is a zonal teleconnection pattern along the Asian jet, is an important modulator for the WJMD–EJMD relationship. Another factor is the precipitation anomalies over a broad tropical region, including the Indian subcontinent, the northern Indian Ocean, and the western North Pacific Ocean. Enhanced or suppressed tropical precipitation respectively induces a northward or southward displacement of the primary body of the jet stream from West Asia to East Asia, which contributes to the in-phase WJMD–EJMD relationship, as suggested by both the observations and simple model results. The SST anomalies associated with the tropical precipitation and in-phase WJMD–EJMD relationship are also discussed. The WJMD–EJMD relationship may have an important implication for identifying and explaining the teleconnections of rainfall and temperature over the broad area from West Asia to East Asia, and from the tropics to the extratropics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaowei Hong, hongxw@mail.iap.ac.cn
Save
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and Coauthors, 2016: Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies. Adv. Atmos. Sci., 33, 19, https://doi.org/10.1007/s00376-015-5056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Li, Z. Xie, and Z. Zhu, 2016: Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies. Climate Dyn., 46, 26732688, https://doi.org/10.1007/s00382-015-2723-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallah, B., S. Sodoudi, and U. Cubasch, 2016: Westerly jet stream and past millennium climate change in arid Central Asia simulated by COSMO-CLM model. Theor. Appl. Climatol., 124, 10791088, https://doi.org/10.1007/s00704-015-1479-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Z., G. Feng, M. Dogar, and G. Huang, 2018: The possible physical mechanism for the EAP–SR co-action. Climate Dyn., 51, 14991516, https://doi.org/10.1007/s00382-017-3967-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R., X. Sun, and X. Yang, 2013: Impact of variability in the Indian summer monsoon on the East Asian summer monsoon. Atmos. Sci. Lett., 14, 1419, https://doi.org/10.1002/asl2.408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Q., and J. Wang, 1988: A comparison of the summer precipitation in India with that in China (in Chinese). J. Trop. Meteor., 4, 5360.

    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, T. Furevik, H. Wang, and F. Li, 2018: Teleconnection between see ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 5264, https://doi.org/10.1007/s00376-017-7029-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., S. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, https://doi.org/10.1007/s00382-012-1416-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., H. Hsu, N. Lin, and H. Chiu, 2011: Roles of European blocking and tropical–extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett., 38, L13806, https://doi.org/10.1029/2011GL047583.

    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Climate, 29, 37533766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2018a: Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers. J. Climate, 31, 92839292, https://doi.org/10.1175/JCLI-D-18-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2018b: Asymmetric relationship between the meridional displacement of the Asian westerly jet and the Silk Road pattern. Adv. Atmos. Sci., 35, 389396, https://doi.org/10.1007/s00376-017-6320-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., S. Xue, R. Lu, and Y. Liu, 2018c: Comparison between the interannual and decadal components of the Silk Road pattern. Atmos. Oceanic Sci. Lett., 11, 270274, https://doi.org/10.1080/16742834.2018.1439661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., R. Wu, J. Kinter III, and S. Yang, 2005: Connection of summer rainfall variations in South and East Asia: Role of El Niño–Southern Oscillation. Int. J. Climatol., 25, 12791289, https://doi.org/10.1002/joc.1159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and W. Li, 1988: Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism (in Chinese). Chin. J. Atmos. Sci., 12, 107116.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, https://doi.org/10.1002/qj.49712152509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. Chowdary, S.-P. Xie, Y. Min, and J. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, https://doi.org/10.1175/JCLI-D-12-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S. Xie, N. Lau, and G. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2001: Baiu rainfall variability and associated monsoon teleconnections. J. Meteor. Soc. Japan, 79, 851860, https://doi.org/10.2151/jmsj.79.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X., and Y. Zhang, 2006: Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle lower reaches of Yangtze River (in Chinese). Plateau Meteor., 25, 382389.

    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Climate, 30, 83578374, https://doi.org/10.1175/JCLI-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Q., S. Gao, H. Wang, and S. Tao, 2004: Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies (in Chinese). Chin. J. Geophys., 47, 1018, https://doi.org/10.3321/j.issn:0001-5733.2004.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., and R. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199211, https://doi.org/10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155165, https://doi.org/10.2151/jmsj.82.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, https://doi.org/10.1175/2008JCLI2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., J. Oh, and B. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukens, K., S. Feldstein, C. Yoo, and S. Lee, 2017: The dynamics of the extratropical response to Madden–Julian oscillation convection. Quart. J. Roy. Meteor. Soc., 143, 10951106, https://doi.org/10.1002/qj.2993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, Y., H. Chen, P. Liu, and D. Li, 2019: Zonally asymmetric variation of summer Asian upper-tropospheric jet and its possible association with North Atlantic SST anomaly and Eurasian land surface thermal anomaly (in Chinese). Chin. J. Atmos. Sci., 43, 401416.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol., 32, 20732080, https://doi.org/10.1002/joc.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Climate, 19, 15311544, https://doi.org/10.1175/JCLI3697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B., Z. Lin, R. Lu, and Y. Lian, 2011: Circulation anomalies associated with interannual variation of early-and late-summer precipitation in Northeast China. Sci. China Earth Sci., 54, 10951104, https://doi.org/10.1007/s11430-011-4173-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. S. R. Prasad, 2018: Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 39433958, https://doi.org/10.1175/JCLI-D-17-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, and W. Yuan, 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and Middle East Asian air temperature. J. Geophys. Res., 113, D15107, https://doi.org/10.1029/2007JD009626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, and W. Yuan, 2009: Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J. Geophys. Res., 114, D20110, https://doi.org/10.1029/2009JD012395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., S. Li, X. Hong, and R. Lu, 2019: Simulated influence of the Atlantic multidecadal oscillation on summer Eurasian nonuniform warming since the mid-1990s. Adv. Atmos. Sci., 36, 811822, https://doi.org/10.1007/s00376-019-8169-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F., J. Yoo, H. Körnich, and F. Kucharski, 2012: Extratropical influences on the inter-annual variability of South-Asian monsoon. Climate Dyn., 38, 16611674, https://doi.org/10.1007/s00382-011-1059-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemura, K., and H. Mukougawa, 2020: Dynamical relationship between quasi-stationary Rossby wave propagation along the Asian jet and Pacific–Japan pattern in boreal summer. J. Meteor. Soc. Japan, 98, 169187, https://doi.org/10.2151/jmsj.2020-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, P., and Y. Zhang, 2019: Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Oceanic Sci. Lett., 12, 254260, https://doi.org/10.1080/16742834.2019.1610326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and J. Wei, 2006: The westward, northward advance of the subtropical high over the west Pacific in summer (in Chinese). J. Appl. Meteor. Sci., 17, 513525.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., H. Zuo, S. Zhao, J. Zhang, and S. Lu, 2018: How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe River Valley? Climate Dyn., 51, 41094121, https://doi.org/10.1007/s00382-017-3591-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Wang, S. Fong, and K. Leong, 2013: Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos., 118, 83068319, https://doi.org/10.1002/jgrd.50633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Zhou, D. Wang, and C. Wang, 2013: The impacts of the summer Asian jet stream biases on surface air temperature in mid-eastern China in IPCC AR4 models. Int. J. Climatol., 33, 265276, https://doi.org/10.1002/joc.3419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical convective response to El Niño. J. Climate, 16, 11211139, https://doi.org/10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, https://doi.org/10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, B. Kim, and J. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 26232634, https://doi.org/10.1175/JCLI-D-14-00454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoon. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, R., G. Srinivas, J. Chowdary, 2018: Atlantic Niño modulation of the Indian summer monsoon through Asian jet. npj Climate Atmos. Sci., 1, 23, https://doi.org/10.1038/s41612-018-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., and Q. Zhang, 2008: Effects of the North Atlantic Oscillation on the summer rainfall anomalies in Xinjiang. Chin. J. Atmos. Sci., 32, 11871196.

    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Chen, and S. Zhao, 2019: A tripole pattern of summertime rainfall and the teleconnections linking northern China to the Indian subcontinent. J. Climate, 32, 36373653, https://doi.org/10.1175/JCLI-D-18-0659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Wang, A. Huang, H. Li, W. Huo, and Q. Yang, 2014: Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol., 116, 403411, https://doi.org/10.1007/s00704-013-0948-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Yu, J. Yao, and X. Dong, 2018: Evaluation of the subtropical westerly jet and its effects on the projected summer rainfall over central Asia using multi-CMIP5 models. Int. J. Climatol., 38, e1176e1189, https://doi.org/10.1002/joc.5443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, F., R. Zhang, and J. Han, 2019: Relationship between the circumglobal teleconnection and Silk Road pattern over Eurasian continent. Sci. Bull., 64, 374376, https://doi.org/10.1016/j.scib.2019.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 283 0 0
Full Text Views 527 190 14
PDF Downloads 608 152 11