Dynamic and Energetic Constraints on the Modality and Position of the Intertropical Convergence Zone in an Aquaplanet

Ori Adam The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

Search for other papers by Ori Adam in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0334-0636
Restricted access

Abstract

The tropical zonal-mean precipitation distribution varies between having single or double peaks, which are associated with intertropical convergence zones (ITCZs). Here, the effect of this meridional modality on the sensitivity of the ITCZ to hemispherically asymmetric heating is studied using an idealized GCM with parameterized Ekman ocean energy transport (OET). In the idealized GCM, transitions from unimodal to bimodal distributions are driven by equatorial ocean upwelling and cooling, which inhibits equatorial precipitation. For sufficiently strong equatorial cooling, the tropical circulation bifurcates to anti-Hadley circulation in the deep tropics, with a descending branch near the equator and off-equatorial double ITCZs. The intensity and extent of the anti-Hadley circulation is limited by a negative feedback: westerly geostrophic surface wind tendency in its poleward-flowing lower branches balances the easterly stress (and hence equatorial upwelling) required for its maintenance. For weak ocean stratification, which goes along with unimodal or weak bimodal tropical precipitation distribution, OET damps shifts of the tropical precipitation centroid but amplifies shifts of precipitation peaks. For strong ocean stratification, which goes along with pronounced double ITCZs, asymmetric heating leads to relative intensification of the precipitation peak in the warming hemisphere, but negligible meridional shifts. The dynamic feedbacks of the coupled system weaken the gradient of the atmospheric energy transport (AET) near the equator. This suggests that over a wide range of climates, the ITCZ position is proportional to the cubic root of the cross-equatorial AET, as opposed to the commonly used linear relation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ori Adam, ori.adam@mail.huji.ac.il

Abstract

The tropical zonal-mean precipitation distribution varies between having single or double peaks, which are associated with intertropical convergence zones (ITCZs). Here, the effect of this meridional modality on the sensitivity of the ITCZ to hemispherically asymmetric heating is studied using an idealized GCM with parameterized Ekman ocean energy transport (OET). In the idealized GCM, transitions from unimodal to bimodal distributions are driven by equatorial ocean upwelling and cooling, which inhibits equatorial precipitation. For sufficiently strong equatorial cooling, the tropical circulation bifurcates to anti-Hadley circulation in the deep tropics, with a descending branch near the equator and off-equatorial double ITCZs. The intensity and extent of the anti-Hadley circulation is limited by a negative feedback: westerly geostrophic surface wind tendency in its poleward-flowing lower branches balances the easterly stress (and hence equatorial upwelling) required for its maintenance. For weak ocean stratification, which goes along with unimodal or weak bimodal tropical precipitation distribution, OET damps shifts of the tropical precipitation centroid but amplifies shifts of precipitation peaks. For strong ocean stratification, which goes along with pronounced double ITCZs, asymmetric heating leads to relative intensification of the precipitation peak in the warming hemisphere, but negligible meridional shifts. The dynamic feedbacks of the coupled system weaken the gradient of the atmospheric energy transport (AET) near the equator. This suggests that over a wide range of climates, the ITCZ position is proportional to the cubic root of the cross-equatorial AET, as opposed to the commonly used linear relation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ori Adam, ori.adam@mail.huji.ac.il
Save
  • Adam, O., 2018: Zonally varying ITCZs in a Matsuno–Gill-type model with an idealized Bjerknes feedback. J. Adv. Model. Earth Syst., 10, 13041318, https://doi.org/10.1029/2017MS001183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Bischoff, and T. Schneider, 2016a: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, https://doi.org/10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Bischoff, and T. Schneider, 2016b: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Schneider, F. Brient, and T. Bischoff, 2016c: Relation of the double-ITCZ bias to the atmospheric energy budget in climate models. Geophys. Res. Lett., 43, 76707677, https://doi.org/10.1002/2016GL069465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Schneider, and F. Brient, 2018a: Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Climate Dyn., 51, 101117, https://doi.org/10.1007/s00382-017-3909-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., and Coauthors, 2018b: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreiro, M., A. Fedorov, R. Pacanowski, and S. G. Philander, 2008: Abrupt climate changes: How freshening of the northern Atlantic affects the thermohaline and wind-driven oceanic circulations. Annu. Rev. Earth Planet. Sci., 36, 3358, https://doi.org/10.1146/annurev.earth.36.090507.143219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and Coauthors, 2013: The aqua-planet experiment (APE): Control SST simulation. J. Meteor. Soc. Japan, 91A, 1756, https://doi.org/10.2151/jmsj.2013-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., 2006: The role of the ocean in the seasonal cycle of the Hadley circulation. J. Atmos. Sci., 63, 33513365, https://doi.org/10.1175/JAS3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Codron, F., 2012: Ekman heat transport for slab oceans. Climate Dyn., 38, 379389, https://doi.org/10.1007/s00382-011-1031-3.

  • Colose, C. M., A. N. LeGrande, and M. Vuille, 2016: Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium. Earth Syst. Dyn., 7, 681696, https://doi.org/10.5194/esd-7-681-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. W. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, https://doi.org/10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, P. A. O’Gorman, and S. Seager, 2014: Climate at high obliquity. Icarus, 243, 236248, https://doi.org/10.1016/j.icarus.2014.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerstman, H., and O. Adam, 2020: Nonlinear damping of ITCZ migrations due to Ekman ocean energy transport. Geophys. Res. Lett., 47, e2019GL086445, https://doi.org/10.1029/2019GL086445.

    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., J. Marshall, and J.-M. Campin, 2019: The ‘sticky’ ITCZ: Ocean-moderated ITCZ shifts. Climate Dyn., 53, 119, https://doi.org/10.1007/s00382-019-04623-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., J. Lu, F. Liu, O. A. Garuba, and L. R. Leung, 2018: Sensitivity of the ITCZ location to ocean forcing via q-flux Green’s function experiments. Geophys. Res. Lett., 45, 13 11613 123, https://doi.org/10.1029/2018GL080772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. International Geophysics Series, Vol. 56, Academic Press, 418 pp.

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilgenbrink, C. C., and D. L. Hartmann, 2018: The response of Hadley circulation extent to an idealized representation of poleward ocean heat transport in an aquaplanet gcm. J. Climate, 31, 97539770, https://doi.org/10.1175/JCLI-D-18-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., 2020: Extratropical influence on the tropical rainfall distribution. Curr. Climate Change Rep., 1, 20172, https://doi.org/10.1038/S41612-017-0004-6.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and F. Codron, 2018a: The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geosci. Lett., 5, 22, https://doi.org/10.1186/s40562-018-0124-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018b: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/S41612-017-0004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705, https://doi.org/10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363, https://doi.org/10.1175/1520-0469(1999)056<1353:WATCZW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, https://doi.org/10.1175/2010JAS3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., J. Marshall, and B. Green, 2019: Modulation of monsoon circulations by cross-equatorial ocean heat transport. J. Climate, 32, 34713485, https://doi.org/10.1175/JCLI-D-18-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 19571977, https://doi.org/10.1007/s00382-014-2138-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möbis, B., and B. Stevens, 2012: Factors controlling the position of the intertropical convergence zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, https://doi.org/10.1029/2012MS000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PAGES Hydro2k Consortium, 2017: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate Past, 13, 18511900, https://doi.org/10.5194/CP-2017-37.

    • Search Google Scholar
    • Export Citation
  • Philander, S., and A. Fedorov, 2003: Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18, 1045, https://doi.org/10.1029/2002PA000837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S., D. Gu, D. Halpern, G. Lambert, N. Lau, T. Li, and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, M., and L. G. Silvers, 2017: Double and single ITCZs with and without clouds. J. Climate, 30, 91479166, https://doi.org/10.1175/JCLI-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, M., and S. Bony, 2019: Stronger zonal convective clustering associated with a wider tropical rain belt. Nat. Commun., 10, 5618, https://doi.org/10.1038/S41467-019-13645-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, https://doi.org/10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W., P. Valdes, and J. Singarayer, 2017: Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys. Res. Lett., 44, 63736382, https://doi.org/10.1002/2017GL073103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, https://doi.org/10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11 66411 653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, https://doi.org/10.1175/JCLI-D-13-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. S., C. Dubois, and J. Marotzke, 2006: Global climate and ocean circulation on an aquaplanet ocean–atmosphere general circulation model. J. Climate, 19, 47194737, https://doi.org/10.1175/JCLI3874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumi, A., 1992: Pattern formation of convective activity over the aqua-planet with globally uniform sea surface temperature (SST). J. Meteor. Soc. Japan, 70, 855876, https://doi.org/10.2151/jmsj1965.70.5_855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, M., and D. Hansen, 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29, 6981, https://doi.org/10.1175/1520-0485(1999)029<0069:TPOMLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talib, J., S. Woolnough, N. Klingaman, and C. Holloway, 2018: The role of the cloud radiative effect in the sensitivity of the intertropical convergence zone to convective mixing. J. Climate, 31, 68216838, https://doi.org/10.1175/JCLI-D-17-0794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Tracking Earth’s energy: From El Niño to global warming. Surv. Geophys., 33, 413426, https://doi.org/10.1007/s10712-011-9150-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., S. Bony, J.-L. Dufresne, and B. Stevens, 2014a: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett., 41, 43084315, https://doi.org/10.1002/2014GL060354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014b: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, https://doi.org/10.1175/JCLI-D-13-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, Y. Ming, W. Yu, and S. M. Kang, 2018: Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 56095628, https://doi.org/10.1175/JCLI-D-17-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1.2. J. Climate, 32, 22072226, https://doi.org/10.1175/JCLI-D-18-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2001: Double ITCZs. J. Geophys. Res., 106, 11 78511 792, https://doi.org/10.1029/2001JD900046.

  • Zheng, Y., J.-L. Lin, and T. Shinoda, 2012: The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J. Geophys. Res., 117, C05024, https://doi.org/10.1029/2011JC007746.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 310 0 0
Full Text Views 377 163 16
PDF Downloads 371 134 12