How Were the Eastward-Moving Heavy Rainfall Events from the Tibetan Plateau to the Lower Reaches of the Yangtze River Enhanced?

Yang Zhao State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Yang Zhao in
Current site
Google Scholar
PubMed
Close
,
Deliang Chen Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Deliang Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0288-5618
,
Yi Deng School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
,
Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
,
Xiang Wang Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiang Wang in
Current site
Google Scholar
PubMed
Close
,
Di Di Key Laboratory for Aerosol–Cloud–Rain of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Di Di in
Current site
Google Scholar
PubMed
Close
,
Mengting Pan Institute for Climate and Application Research, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Mengting Pan in
Current site
Google Scholar
PubMed
Close
, and
Xiaodan Ma Key Laboratory for Aerosol–Cloud–Rain of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaodan Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates eastward-moving summer heavy rainfall events in the lower reaches of the Yangtze River (LRYR), which are associated with the Tibetan Plateau (TP) vortices. On the basis of rainfall data from gauges and additional atmospheric data from ERA-Interim, the dynamic and thermodynamic effects of moisture transport and diabatic heating are estimated to determine the physical mechanisms that support the eastward-moving heavy rainfall events. As the rainband moves eastward, it is accompanied by anomalous cyclonic circulation in the upper and middle troposphere and enhanced vertical motion throughout the troposphere. In particular, the rainfall region is located in the fore of the upper-level trough, which is ideal for baroclinic organization of the convective system and further development of the eastward-moving vortex. The large atmospheric apparent heat source (Q1) also contributes for lifting the lower-level air into the upper atmosphere and for enhancing the low-level convective motion and convergence during the heavy rainfall process. Piecewise potential vorticity inversion further verifies the crucial role that the diabatic heating played in developing the anomalous geopotential height favorable for the enhanced rainfall. The combined action of the dynamic and thermodynamic processes, as well as the rich moisture supply from the seas, synergistically sustained and enhanced the eastward-moving rainfall.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deliang Chen, deliang@gvc.gu.se

Abstract

This study investigates eastward-moving summer heavy rainfall events in the lower reaches of the Yangtze River (LRYR), which are associated with the Tibetan Plateau (TP) vortices. On the basis of rainfall data from gauges and additional atmospheric data from ERA-Interim, the dynamic and thermodynamic effects of moisture transport and diabatic heating are estimated to determine the physical mechanisms that support the eastward-moving heavy rainfall events. As the rainband moves eastward, it is accompanied by anomalous cyclonic circulation in the upper and middle troposphere and enhanced vertical motion throughout the troposphere. In particular, the rainfall region is located in the fore of the upper-level trough, which is ideal for baroclinic organization of the convective system and further development of the eastward-moving vortex. The large atmospheric apparent heat source (Q1) also contributes for lifting the lower-level air into the upper atmosphere and for enhancing the low-level convective motion and convergence during the heavy rainfall process. Piecewise potential vorticity inversion further verifies the crucial role that the diabatic heating played in developing the anomalous geopotential height favorable for the enhanced rainfall. The combined action of the dynamic and thermodynamic processes, as well as the rich moisture supply from the seas, synergistically sustained and enhanced the eastward-moving rainfall.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deliang Chen, deliang@gvc.gu.se
Save
  • Black, R. X., and R. Dole, 1993: The dynamics of large-scale cyclogenesis over the North Pacific Ocean. J. Atmos. Sci., 50, 421442, https://doi.org/10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. M. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Climate Dyn., 47, 9891006, https://doi.org/10.1007/s00382-015-2885-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curio, J., R. Schiemann, K. I. Hodges, and A. G. Turner, 2019: Climatology of Tibetan Plateau vortices in reanalysis data and a high-resolution global climate model. J. Climate, 32, 19331950, https://doi.org/10.1175/JCLI-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downton, M. W. and R. A. Pielke, 2005: How accurate are disaster loss data? The case of U.S. flood damage. Nat.Hazards, 35, 211228, https://doi.org/10.1007/s11069-004-4808-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, https://doi.org/10.1007/s00382-004-0488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., and Z. X. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep., 5, 13711, https://doi.org/10.1038/srep13711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A. M., G. X. Wu, Y. M. Liu, Y. M. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978992, https://doi.org/10.1007/s00376-012-1220-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., Q. L. You, and Y. Q. Zhang, 2019: Effect of Tibetan Plateau heating on summer heavy extreme precipitation in eastern China. Atmos. Res., 218, 364371, https://doi.org/10.1016/j.atmosres.2018.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, https://doi.org/10.1029/2003GL017909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., J. Y. Lee, and K. J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 14031412, https://doi.org/10.1002/joc.4433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., Y. Deng, Z. M. Zhou, C. G. Cui, and X. Q. Dong, 2018: A statistical and dynamical characterization of large-scale circulation patterns associated with summer extreme precipitation over the middle reaches of Yangtze River. Climate Dyn., 52, 62136228, https://doi.org/10.1007/s00382-018-4501-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y. Y., and Y. F. Qian, 2004: Relationship between South Asian high and characteristic of precipitation in mid- and lower reaches of Yangtze River and North China (in Chinese). Plateau Meteor., 23, 6874, https://doi.org/1000-0534(2004)01-0068-07.

    • Search Google Scholar
    • Export Citation
  • Hunt, K., J. Curio, A. G. Turner, and R. Schiemann, 2018: Subtropical westerly jet influence on occurrence of western disturbances and Tibetan Plateau vortices. Geophys. Res. Lett., 45, 86298636, https://doi.org/10.1029/2018GL077734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulies, J., D. L. Chen, and M. H. Wang, 2019: Temporal and spatial variations of convection and precipitation over the Tibetan Plateau based on recent satellite observations. Part I: Cloud climatology derived from CloudSat and CALIPSO. Int. J. Climatol., 39, 53965412, https://doi.org/10.1002/joc.6162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and Coauthors, 2014: Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J., 59 (1), 128, https://doi.org/10.1080/02626667.2013.857411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, Y. T., S. Qiu, and W. Zhou, 2018: Modulations of rising motion and moisture on summer precipitation over the middle and lower reaches of the Yangtze River. Climate Dyn., 51, 42594269, https://doi.org/10.1007/s00382-018-4247-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Q., Q. J. Zuo, X. D. Xu, and S. T. Gao, 2016: Water vapor transport around the Tibetan Plateau and its effect on summer rainfall over the Yangtze River valley. J. Meteor. Res., 30, 472482, https://doi.org/10.1007/s13351-016-5123-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. H. Zhang, and M. Wen, 2017: Genesis of southwest vortices and its relation to Tibetan Plateau vortices: Genesis of SWVs and its relation to TPVs. Quart. J. Roy. Meteor. Soc., 143, 25562566, https://doi.org/10.1002/qj.3106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and M. Zhang, 2017: The role of shallow convection over the Tibetan Plateau. J. Climate, 30, 57915803, https://doi.org/10.1175/JCLI-D-16-0599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., D. Wang, Z. Liang, and C. Liu, 2016: The structure and development of an extratropical cyclone over northeastern Asia. SOLA, 12, 253258, https://doi.org/10.2151/SOLA.2016-050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and Y. Deng, 2015: Initial transient response of an intensifying baroclinic wave to increase in cloud droplet number concentration. J. Climate, 28, 96699677, https://doi.org/10.1175/JCLI-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang, 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 19291948, https://doi.org/10.5194/acp-11-1929-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X. S., X. K. Wu, T. Yuan, J. C. Bian, and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, https://doi.org/10.1175/JCLI-D-14-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salinger, M. J., and G. M. Griffiths, 2001: Trends in New Zealand daily temperature and rainfall extremes. Int. J. Climatol., 21, 14371452, https://doi.org/10.1002/joc.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. Y., Y. Q. Wang, and X. D. Xu, 2008: Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: A regional model study. Geophys. Res. Lett., 35, L19707, https://doi.org/10.1029/2008GL034740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity–potential temperature framework. J. Atmos. Sci., 73, 10631081, https://doi.org/10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., and S. Yang, 2017: Regional characteristics of long-term changes in total and extreme precipitation over China and their links to atmospheric–oceanic features. Int. J. Climatol., 37, 751769, https://doi.org/10.1002/joc.4737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. Z., X. Li, X. H. Wu, and J. Yu, 2015: The rainstorm comprehensive economic loss assessment based on CGE model: Using a July heavy rainstorm in Beijing as an example. Nat. Hazards, 76, 839854, https://doi.org/10.1007/s11069-014-1521-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M. R., J. Wang, A. M. Duan, and Y. M. Liu, 2019: Quasi-biweekly impact of the atmospheric heat source over the Tibetan Plateau on summer rainfall in eastern China. Climate Dyn., 53, 44894504, https://doi.org/10.1007/s00382-019-04798-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., and J. E. Martin, 2017: Diagnosis of a North American polar–subtropical jet superposition employing piecewise potential vorticity inversion. Mon. Wea. Rev., 145, 18531873, https://doi.org/10.1175/MWR-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, J. He, and Z. Jiang, 2006: Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River. Geophys. Res. Lett., 33, L05813, https://doi.org/10.1029/2005GL024487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, M. Z., Q. Zhang, and V. P. Singh, 2014: Influences of ENSO, NAO, IOD, and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol., 35, 35563567, https://doi.org/10.1002/joc.4228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. D., C. G. Lu, Y. H. Ding, X. H. Shi, Y. D. Guo, and W. H. Zhu, 2013: What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmos. Sci. Lett., 14, 227234, https://doi.org/10.1002/asl2.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. D., and Coauthors, 2017: Are precipitation anomalies associated with aerosol variations over eastern China? Atmos. Chem. Phys., 17, 80118019, https://doi.org/10.5194/acp-17-8011-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. G. Lin, W. J. Tang, and Y. Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 33753399, https://doi.org/10.1175/JCLI-D-14-00259.1.

  • Zhang, Q., G. X. Wu, and Y. F. Qian, 2002: The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733744, https://doi.org/10.2151/jmsj.80.733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C. Y. Xu, Z. Zhang, Y. D. Chen, C. L. Liu, and H. Lin, 2008: Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol., 353, 215227, https://doi.org/10.1016/j.jhydrol.2007.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. L., and S. Y. Tao, 2002: The influences of Tibetan Plateau of weather anomalies over Chang Jiang River in 1998. J. Meteor. Res., 60, 442452.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., and L. X. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18 (1), 106116, https://doi.org/10.1007/s00376-001-0007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, B. Chen, and Y. J. Wang, 2016a: The upstream “strong signals” of the water vapor transport over the Tibetan Plateau during a heavy rainfall event in the Yangtze River Basin. Adv. Atmos. Sci., 33, 13431350, https://doi.org/10.1007/s00376-016-6118-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, T. L. Zhao, H. X. Xu, F. Mao, H. Sun, and Y. H. Wang, 2016b: Extreme precipitation events in East China and associated moisture transport pathways. China Earth Sci., 59, 18541872, https://doi.org/10.1007/s11430-016-5315-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, Z. Ruan, B. Chen, and F. Wang, 2018: Precursory strong-signal characteristics of the convective clouds of the central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin. Meteor. Atmos. Phys., 131, 697712, https://doi.org/10.1007/s00703-018-0597-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, L. P. Liu, R. Zhang, H. X. Xu, Y. J. Wang, and J. Li, 2019a: Effects of convection over the Tibetan Plateau on rainstorm in the downstream area of the Yangtze River Basin. Atmos. Res., 219, 2435, https://doi.org/10.1016/j.atmosres.2018.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and Coauthors, 2019b: The large-scale circulation patterns responsible for heavy precipitation over the North China Plain in midsummer. J. Geophys. Res. Atmos., 124, 12 79412 809, https://doi.org/10.1029/2019JD030583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, L., Z. Zhang, L. Chen, J. H. Yang, and F. L. Zou, 2016: Application of the Doppler weather radar in real-time quality control of hourly gauge precipitation in eastern China. Atmospheric, 172–173, 109118, https://doi.org/10.1016/j.atmosres.2015.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zong, Y., and X. Chen, 2000: The 1998 flood on the Yangtze, China. Nat. Hazards, 22, 165184, https://doi.org/10.1023/A:1008119805106.

All Time Past Year Past 30 Days
Abstract Views 434 0 0
Full Text Views 1210 615 58
PDF Downloads 578 207 12