• Abalos, M., B. Legras, F. Ploeger, and W. J. Randel, 2015: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120, 75347554, https://doi.org/10.1002/2015JD023182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhik, S., H. H. Hendon, and M. C. Wheeler, 2019: On the sensitivity of convectively coupled equatorial waves to the quasi-biennial oscillation. J. Climate, 32, 58335847, https://doi.org/10.1175/JCLI-D-19-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Butchart, N., 2014: The Brewer–Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1991: Quasi-biennial modulation of planetary wave fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48, 10431061, https://doi.org/10.1175/1520-0469(1991)048<1043:QBMOPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571262, https://doi.org/10.1175/2008BAMS2603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flury, T., D. L. Wu, and W. G. Read, 2013: Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS. Atmos. Chem. Phys., 13, 45634575, https://doi.org/10.5194/acp-13-4563-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2010: Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers. J. Geophys. Res., 115, D18304, https://doi.org/10.1029/2010JD014179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, https://doi.org/10.1029/2007JD008481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, https://doi.org/10.1175/JAS-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and P. M. de Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80, 911924, https://doi.org/10.2151/jmsj.80.911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampson, J., and P. Haynes, 2006: Influence of the equatorial QBO on the extratropical stratosphere. J. Atmos. Sci., 63, 936951, https://doi.org/10.1175/JAS3657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and S. Abhik, 2018: Differences in vertical structure of the Madden–Julian oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett., 45, 44194428, https://doi.org/10.1029/2018GL077207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, http://ecmwf.int/sites/default/files/elibrary/2019/19027-global-reanalysis-goodbye-era-interim-hello-era5.pdf.

  • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935946, https://doi.org/10.1175/2008JAS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huesmann, A. S., and M. H. Hitchman, 2001: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res., 106, 11 85911 874, https://doi.org/10.1029/2001JD900031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. B. A., H. R. Schneider, and M. B. McElroy, 1998: Effects of the quasi-biennial oscillation on the zonally averaged transport of tracers. J. Geophys. Res., 103, 11 23511 249, https://doi.org/10.1029/98JD00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jucker, M., and E. P. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., J. H. Richter, and Z. Martin, 2019: Insignificant QBO–MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos., 124, 12 65512 666, https://doi.org/10.1029/2019JD031416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Hera, S.-W. Son, and C. Yoo, 2020: QBO modulation of the MJO-related precipitation in East Asia. J. Geophys. Res. Atmos., 125, e2019JD031929. https://doi.org/10.1029/2019JD031929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Hyemi, J. Caron, J. Richter, and I. Simpson, 2020: The lack of QBO–MJO connection in CMIP6 models. Geophys. Res. Lett., 47, e2020GL087295, https://doi.org/10.1029/2020GL087295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnersley, J. S., 1999: Seasonal asymmetry of the low- and middle-latitude QBO circulation anomaly. J. Atmos. Sci., 56, 11401153, https://doi.org/10.1175/1520-0469(1999)056<1140:SAOTLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnersley, J. S., and K. K. Tung, 1998: Modeling the global interannual variability of ozone due to the equatorial QBO and to extratropical planetary wave variability. J. Atmos. Sci., 55, 14171428, https://doi.org/10.1175/1520-0469(1998)055<1417:MTGIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnersley, J. S., and K. K. Tung, 1999: Mechanisms for the extratropical QBO in circulation and ozone. J. Atmos. Sci., 56, 19421962, https://doi.org/10.1175/1520-0469(1999)056<1942:MFTEQI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., S. Abhik, H. H. Hendon, M. Bell, C. Lucas, A. G. Marshall, and E. C. J. Oliver, 2019: On the emerging relationship between the stratospheric quasi-biennial oscillation and the Madden–Julian oscillation. Sci. Rep., 9, 2981, https://doi.org/10.1038/s41598-019-40034-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only. SOLA, 10, 7882, https://doi.org/10.2151/sola.2014-016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. C. K., and N. P. Klingaman, 2018: The effect of the quasi-biennial oscillation on the Madden–Julian oscillation in the Met Office Unified Model global ocean mixed layer configuration. Atmos. Sci. Lett., 19, e816, https://doi.org/10.1002/asl.816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn., 53, 16811695, https://doi.org/10.1007/s00382-019-04719-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos., 118, 7384, https://doi.org/10.1029/2012JD018813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., D. Paynter, Y. Ming, and V. Ramaswamy, 2017: Changes of the tropical tropopause layer under global warming. J. Climate, 30, 12451258, https://doi.org/10.1175/JCLI-D-16-0457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 13651377, https://doi.org/10.1007/s00382-016-3392-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, Z., S. Wang, J. Nie, and A. Sobel, 2019: The impact of the QBO on MJO convection in cloud-resolving simulations. J. Atmos. Sci., 76, 669688, https://doi.org/10.1175/JAS-D-18-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, Z., F. Vitart, S. Wang, and A. Sobel, 2020: The impact of the stratosphere on the MJO in a forecast model. J. Geophys. Res. Atmos., 125, e2019JD032106. https://doi.org/10.1029/2019JD032106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., 2017: S-RIP: Zonal-mean dynamical variables of global atmospheric reanalyses on pressure levels. Centre for Environmental Data Analysis, accessed 24 July 2020, https://doi.org/10.5285/b241a7f536a244749662360bd7839312.

    • Crossref
    • Export Citation
  • Martineau, P., J. Wright, N. Zhu, and M. Fujiwara, 2018: Zonal-mean data set of global atmospheric reanalyses on pressure levels. Earth Syst. Sci. Data, 10, 19251941, https://doi.org/10.5194/essd-10-1925-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, K. J., and E. A. Barnes, 2020: Subseasonal midlatitude prediction skill following quasi-biennial oscillation and Madden–Julian Oscillation activity. Wea. Climate Dyn. Discuss., 1, 247259, https://doi.org/10.5194/wcd-2019-13.

    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naito, Y., and S. Yoden, 2006: Behavior of planetary waves before and after stratospheric sudden warming events in several phases of the equatorial QBO. J. Atmos. Sci., 63, 16371649, https://doi.org/10.1175/JAS3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, J. L., T. Flury, G. L. Manney, M. L. Santee, N. J. Livesey, and J. Worden, 2014: Tropospheric ozone variations governed by changes in stratospheric circulation. Nat. Geosci., 7, 340344, https://doi.org/10.1038/ngeo2138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 36253638, https://doi.org/10.1175/JAS-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 11051125, https://doi.org/10.1175/JAS-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwano, M., K. Yamazaki, and M. Shiotani, 2003: Seasonal and QBO variations of ascent rate in the tropical lower stratosphere as inferred from UARS HALOE trace gas data. J. Geophys. Res., 108, 4794, https://doi.org/10.1029/2003JD003871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and R. Young, 1992: Modeling the quasi-biennial oscillation’s effect on the winter stratospheric circulation. J. Atmos. Sci., 49, 24372448, https://doi.org/10.1175/1520-0469(1992)049<2437:MTQBOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., L. J. Gray, and A. A. Scaife, 2006: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett., 33, L06825, https://doi.org/10.1029/2005GL024715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Ortiz, C., P. Ribera, R. García-Herrera, M. A. Giorgetta, and R. R. García, 2008: Forcing mechanism of the seasonally asymmetric quasi-biennial oscillation secondary circulation in ERA-40 and MAECHAM5. J. Geophys. Res., 113, D16103, https://doi.org/10.1029/2007JD009288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., I. M. Moroz, P. L. Read, and S. M. Osprey, 2016: Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quart. J. Roy. Meteor. Soc., 142, 11111120, https://doi.org/10.1002/qj.2714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., Y. Yu, D. Guo, C. Shi, D. Chen, and D. Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3, 166181, https://doi.org/10.26464/epp2019012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Elsevier, 627 pp.

  • Son, S., and S. Lee, 2007: Intraseasonal variability of the zonal-mean tropical tropopause height. J. Atmos. Sci., 64, 26952706, https://doi.org/10.1175/JAS3982A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2020: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmos. Chem. Phys., 20, 753770, https://doi.org/10.5194/acp-20-753-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., E. A. Barnes, E. D. Maloney, and S. C. van den Heever, 2020: The global teleconnection signature of the Madden–Julian oscillation and its modulation by the quasi-biennial oscillation. J. Geophys. Res. Atmos., 125, e2020JD032653, https://doi.org/10.1029/2020JD032653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, https://doi.org/10.1175/JAS-D-13-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. K. Tippett, A. H. Sobel, Z. Martin, and F. Vitart, 2019: Impact of the QBO on prediction and predictability of the MJO convection. J. Geophys. Res. Atmos., 124, 11 76611 782, https://doi.org/10.1029/2019JD030575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., and L. J. Gray, 2014: How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci., 71, 391409, https://doi.org/10.1175/JAS-D-13-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I. P., H. Lu, N. J. Mitchell, and T. Phillips, 2015: Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci., 72, 44874507, https://doi.org/10.1175/JAS-D-14-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 282 282 41
Full Text Views 90 90 28
PDF Downloads 103 103 26

Variability in QBO Temperature Anomalies on Annual and Decadal Time Scales

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • 3 Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
  • 4 NOAA/Chemical Sciences Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zane Karas Martin, zkmartin@rams.colostate.edu

Abstract

The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zane Karas Martin, zkmartin@rams.colostate.edu
Save