Revisiting the Causal Connection between the Great Salinity Anomaly of the 1970s and the Shutdown of Labrador Sea Deep Convection

Who M. Kim Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Who M. Kim in
Current site
Google Scholar
PubMed
Close
,
Stephen Yeager Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stephen Yeager in
Current site
Google Scholar
PubMed
Close
, and
Gokhan Danabasoglu Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Great Salinity Anomaly (GSA) of the 1970s is the most pronounced decadal-scale low-salinity event observed in the subpolar North Atlantic (SPNA). Using various simulations with the Community Earth System Model, here we offer an alternative view on some aspects of the GSA. Specifically, we examine the relative roles of reduced surface heat flux associated with the negative phase of the North Atlantic Oscillation (NAO) and extreme Fram Strait sea ice export (FSSIE) in the late 1960s as possible drivers of the shutdown of Labrador Sea (LS) deep convection. Through composite analysis of a long control simulation, the individual oceanic impacts of extreme FSSIE and surface heat flux events in the LS are isolated. A dominant role for the surface heat flux events for the suppression of convection and freshening in the interior LS is found, while the FSSIE events play a surprisingly minor role. The interior freshening results from reduced mixing of fresher upper ocean with saltier deep ocean. In addition, we find that the downstream propagation of the freshwater anomaly across the SPNA is potentially induced by the persistent negative NAO forcing in the 1960s through an adjustment of thermohaline circulation, with the extreme FSSIE-induced low-salinity anomaly mostly remaining in the boundary currents in the western SPNA. Our results suggest a prominent driving role of the NAO-related heat flux forcing for key aspects of the observed GSA, including the shutdown of LS convection and transbasin propagation of low-salinity waters.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0327.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Who M. Kim, whokim@ucar.edu

Abstract

The Great Salinity Anomaly (GSA) of the 1970s is the most pronounced decadal-scale low-salinity event observed in the subpolar North Atlantic (SPNA). Using various simulations with the Community Earth System Model, here we offer an alternative view on some aspects of the GSA. Specifically, we examine the relative roles of reduced surface heat flux associated with the negative phase of the North Atlantic Oscillation (NAO) and extreme Fram Strait sea ice export (FSSIE) in the late 1960s as possible drivers of the shutdown of Labrador Sea (LS) deep convection. Through composite analysis of a long control simulation, the individual oceanic impacts of extreme FSSIE and surface heat flux events in the LS are isolated. A dominant role for the surface heat flux events for the suppression of convection and freshening in the interior LS is found, while the FSSIE events play a surprisingly minor role. The interior freshening results from reduced mixing of fresher upper ocean with saltier deep ocean. In addition, we find that the downstream propagation of the freshwater anomaly across the SPNA is potentially induced by the persistent negative NAO forcing in the 1960s through an adjustment of thermohaline circulation, with the extreme FSSIE-induced low-salinity anomaly mostly remaining in the boundary currents in the western SPNA. Our results suggest a prominent driving role of the NAO-related heat flux forcing for key aspects of the observed GSA, including the shutdown of LS convection and transbasin propagation of low-salinity waters.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0327.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Who M. Kim, whokim@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 6.29 MB)
Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 48514 498, https://doi.org/10.1029/JC094iC10p14485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2004: Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys. Res. Lett., 31, L08306, https://doi.org/10.1029/2003GL019334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S. A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168, https://doi.org/10.1016/S0079-6611(98)00015-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L. Bamber, 2016: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci., 9, 523527, https://doi.org/10.1038/ngeo2740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, https://doi.org/10.1175/2008JPO3485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, https://doi.org/10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., L. Landrum, S. G. Yeager, and P. R. Gent, 2019: Robust and nonrobust aspects of Atlantic meridional overturning circulation variability and mechanisms in the Community Earth System Model. J. Climate, 32, 73497368, https://doi.org/10.1175/JCLI-D-19-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R., J. Meincke, S. A. Malmberg, and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103151, https://doi.org/10.1016/0079-6611(88)90049-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R., B. Rudels, S. Dye, M. Karcher, J. Meincke, and I. Yashayaev, 2007: Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr., 73, 210230, https://doi.org/10.1016/j.pocean.2006.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodd, P. A., K. J. Heywood, M. P. Meredith, A. C. Naveira-Garabato, A. D. Marca, and K. K. Falkner, 2009: Sources and fate of freshwater exported in the East Greenland Current. Geophys. Res. Lett., 36, L19608, https://doi.org/10.1029/2009GL039663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., and Coauthors, 2016: Greenland freshwater pathways in the sub-Arctic seas from model experiments with passive tracers. J. Geophys. Res. Oceans, 121, 877907, https://doi.org/10.1002/2015JC011290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., F. Straneo, and C. A. Katsman, 2012: Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the Great Salinity Anomaly years 1968–71. J. Climate, 25, 67436755, https://doi.org/10.1175/JCLI-D-11-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haak, H., J. Jungclaus, U. Mikolajewicz, and M. Latif, 2003: Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30, 1473, https://doi.org/10.1029/2003GL017065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and Coauthors, 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 1335, https://doi.org/10.1016/j.gloplacha.2014.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1993: An Arctic source for the great salinity anomaly: A simulation of the Arctic ice-ocean system for 1955–1975. J. Geophys. Res., 98, 16 39716 410, https://doi.org/10.1029/93JC01504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1999: A simulation of thermohaline effects of a great salinity anomaly. J. Climate, 12, 17811795, https://doi.org/10.1175/1520-0442(1999)012<1781:ASOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, https://doi.org/10.1175/2007JPO3567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., and Coauthors, 2020: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and M. H. Visbeck, 2002: Quasi-decadal salinity fluctuations in the Labrador Sea. J. Phys. Oceanogr., 32, 687701, https://doi.org/10.1175/1520-0485(2002)032<0687:QDSFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 5.1. Doc. LA-CC-06-012, 116 pp., http://www.ccpo.odu.edu/~klinck/Reprints/PDF/cicedoc2015.pdf.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ionita, M., P. Scholz, G. Lohmann, M. Dima, and M. Prange, 2016: Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic meridional overturning circulation. Sci. Rep., 6, 32881, https://doi.org/10.1038/srep32881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, https://doi.org/10.1007/s10872-009-0027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Arctic Ocean freshwater: How robust are model simulations? J. Geophys. Res., 117, C00D16, https://doi.org/10.1029/2012JC007907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y. O. Kwon, and W. G. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, https://doi.org/10.1029/2007JC004515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2016: Atmospheric conditions associated with Labrador Sea deep convection: New insights from a case study of the 2006/07 and 2007/08 winters. J. Climate, 29, 52815297, https://doi.org/10.1175/JCLI-D-15-0527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble. J. Climate, 31, 787813, https://doi.org/10.1175/JCLI-D-17-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, and G. Danabasoglu, 2020: Atlantic multidecadal variability and associated climate impacts initiated by ocean thermohaline dynamics. J. Climate, 33, 13171334, https://doi.org/10.1175/JCLI-D-19-0530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., U. Mikolajewicz, H. Haak, and J. Jungclaus, 2006: Variability of Fram Strait sea ice export: Causes, impacts and feedbacks in a coupled climate model. Climate Dyn., 26, 1734, https://doi.org/10.1007/s00382-005-0060-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109, C01009, https://doi.org/10.1029/2003JC001785.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, https://doi.org/10.1175/JCLI-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., 1980: Oceanographic conditions at ocean weather ship Bravo, 1964–1974. Atmos.–Ocean, 18, 227238, https://doi.org/10.1080/07055900.1980.9649089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Lohmann, K., H. Drange, and M. Bentsen, 2009: Response of the North Atlantic subpolar gyre to persistent North Atlantic Oscillation like forcing. Climate Dyn., 32, 273285, https://doi.org/10.1007/s00382-008-0467-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., R. M. Castelao, A. K. Rennermalm, M. Tedesco, A. Bracco, P. L. Yager, and T. L. Mote, 2016: Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci., 9, 528532, https://doi.org/10.1038/ngeo2708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., D. Desbruyères, J. L. Bamber, B. A. de Cuevas, A. C. Coward, and Y. Aksenov, 2010: Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci., 6, 749760, https://doi.org/10.5194/os-6-749-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, https://doi.org/10.1029/98RG02739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., and S. Häkkinen, 1997: Influence of sea ice on the thermohaline circulation in the Arctic–North Atlantic Ocean. Geophys. Res. Lett., 24, 32573260, https://doi.org/10.1029/97GL03192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. R. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20, 555565, https://doi.org/10.1007/s00382-002-0294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, https://doi.org/10.1175/JCLI-D-11-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2014: Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Climate Dyn., 42, 23532365, https://doi.org/10.1007/s00382-014-2115-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, S., and U. Send, 2007: Origin and composition of seasonal Labrador Sea freshwater. J. Phys. Oceanogr., 37, 14451454, https://doi.org/10.1175/JPO3065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmith, T., and C. Hansen, 2003: Fram Strait ice export during the nineteenth and twentieth centuries reconstructed from a multiyear sea ice index from Southwestern Greenland. J. Climate, 16, 27822791, https://doi.org/10.1175/1520-0442(2003)016<2782:FSIEDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulze Chretien, L. M., and E. Frajka-Williams, 2018: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea. Ocean Sci., 14, 12471264, https://doi.org/10.5194/os-14-1247-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., S. Kern, D. Stammer, and E. Hansen, 2009: Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophys. Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628, https://doi.org/10.1175/JPO2875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. Discuss., 13, 36433708, https://doi.org/10.5194/gmd-13-3643-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., C. Deser, M. Alexander, and R. Tomas, 2010: Atmospheric forcing of Fram Strait sea ice export: A closer look. Climate Dyn., 35, 13491360, https://doi.org/10.1007/s00382-009-0647-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14, 35083517, https://doi.org/10.1175/1520-0442(2001)014<3508:FSIFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1990: Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate, 3, 14621473, https://doi.org/10.1175/1520-0442(1990)003<1462:ACTUOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and Coauthors, 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modell., 99, 110132, https://doi.org/10.1016/j.ocemod.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, https://doi.org/10.1016/j.pocean.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2016: Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans, 121, 80958114, https://doi.org/10.1002/2016JC012046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., and G. Danabasoglu, 2014: The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Climate, 27, 32223247, https://doi.org/10.1175/JCLI-D-13-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ypma, S. L., N. Brüggemann, S. Georgiou, P. Spence, H. A. Dijkstra, J. D. Pietrzak, and C. A. Katsman, 2019: Pathways and watermass transformation of Atlantic Water entering the Nordic Seas through Denmark Strait in two high resolution ocean models. Deep-Sea Res. I, 145, 5972, https://doi.org/10.1016/j.dsr.2019.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, https://doi.org/10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2017: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability. Geophys. Res. Lett., 44, 78657875, https://doi.org/10.1002/2017GL074342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 381 0 0
Full Text Views 577 269 35
PDF Downloads 557 222 34