Tropical Cyclones Downscaled from Simulations of the Last Glacial Maximum

Quinton A. Lawton Texas A&M University, College Station, Texas

Search for other papers by Quinton A. Lawton in
Current site
Google Scholar
PubMed
Close
,
Robert L. Korty Texas A&M University, College Station, Texas

Search for other papers by Robert L. Korty in
Current site
Google Scholar
PubMed
Close
, and
Ryan A. Zamora Texas A&M University, College Station, Texas

Search for other papers by Ryan A. Zamora in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The tracks, intensities, and other properties of tropical cyclones downscaled from three models’ simulations of the Last Glacial Maximum (LGM) are analyzed and compared to those of storms downscaled from simulations of the present climate. Globally, the mean maximum intensity of storms generated from each model is lower at LGM, as is the fraction of all storms that reach intensities of category 4 or higher on the Saffir–Simpson hurricane wind scale. The median day of the storm season shifts earlier by an average of one week in all three models in both hemispheres. Two of the three models’ LGM simulations feature a reduction in storm count and global power dissipation index compared to the current climate, but a third shows no significant difference between the two climates. Although each model is forced by the same global changes, differences in the way sea surface temperatures and other large-scale environmental conditions respond in the North Atlantic impart significant differences in the climatology at LGM between models. Our results from the cold LGM provide a novel opportunity to assess how tropical cyclones respond to climate changes.

Current affiliation: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida.

Current affiliation: Johns Hopkins University, Baltimore, Maryland.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Quinton A. Lawton, quinton.lawton@rsmas.miami.edu

Abstract

The tracks, intensities, and other properties of tropical cyclones downscaled from three models’ simulations of the Last Glacial Maximum (LGM) are analyzed and compared to those of storms downscaled from simulations of the present climate. Globally, the mean maximum intensity of storms generated from each model is lower at LGM, as is the fraction of all storms that reach intensities of category 4 or higher on the Saffir–Simpson hurricane wind scale. The median day of the storm season shifts earlier by an average of one week in all three models in both hemispheres. Two of the three models’ LGM simulations feature a reduction in storm count and global power dissipation index compared to the current climate, but a third shows no significant difference between the two climates. Although each model is forced by the same global changes, differences in the way sea surface temperatures and other large-scale environmental conditions respond in the North Atlantic impart significant differences in the climatology at LGM between models. Our results from the cold LGM provide a novel opportunity to assess how tropical cyclones respond to climate changes.

Current affiliation: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida.

Current affiliation: Johns Hopkins University, Baltimore, Maryland.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Quinton A. Lawton, quinton.lawton@rsmas.miami.edu
Save
  • Abe-Ouchi, A., and Coauthors, 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, https://doi.org/10.5194/gmd-8-3621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2013: A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate Past, 9, 367376, https://doi.org/10.5194/cp-9-367-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1982: Tropical Cyclones, Their Evolution, Structure and Effects. American Meteorological Society, 208 pp.

    • Crossref
    • Export Citation
  • Bartlein, P. J., and S. L. Shafer, 2019: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): Impact and strategies for data analysis. Geosci. Model Dev., 12, 38893913, https://doi.org/10.5194/gmd-12-3889-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, https://doi.org/10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, E. C., B. L. Otto-Bliesner, J. E. Kay, and N. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 19011925, https://doi.org/10.1175/JCLI-D-11-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., G. J. Holland, and E. Trowler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, https://doi.org/10.1175/JCLI-D-11-00619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev. Climate Change, 7, 211237, https://doi.org/10.1002/wcc.373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and J. Tierney, 2013: The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci., 6, 485491, https://doi.org/10.1038/ngeo1823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, A. J. Broccoli, B. L. Otto-Bliesner, and P. Braconnot, 2011: The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies. Paleoceanography, 26, PA3217, https://doi.org/10.1029/2010PA002083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., J. E. Tierney, B. L. Otto-Bliesner, A. Timmermann, T. Bhattacharya, N. Rosenbloom, and E. Brady, 2018: Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv., 4, eaat9658, https://doi.org/10.1126/sciadv.aat9658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., S. J. Camargo, A. H. Sobel, M. Biasutti, K. A. Emanuel, G. A. Vecchi, M. Zhao, and M. K. Tippett, 2015: Projected twenty-first-century changes in the length of the tropical cyclone season. J. Climate, 28, 61816192, https://doi.org/10.1175/JCLI-D-14-00686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, https://doi.org/10.1038/326483a0.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, https://doi.org/10.1175/JCLI3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Emanuel, K. A., and A. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447458, https://doi.org/10.1002/jame.20032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347368, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, https://doi.org/10.1038/nature08831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598, https://doi.org/10.1175/MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., and Coauthors, 2014: Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn., 43, 671688, https://doi.org/10.1007/s00382-013-1922-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., P. J. Bartlein, K. Izumi, G. Li, J. Annan, J. Hargreaves, P. Braconnot, and M. Kageyama, 2015: Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Climate Change, 5, 735743, https://doi.org/10.1038/nclimate2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobgood, J. S., and R. S. Cerveny, 1988: Ice-age hurricanes and tropical storms. Nature, 333, 243245, https://doi.org/10.1038/333243a0.

  • Huang, B., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. NOAA National Centers for Environmental Information, accessed 21 March 2019, https://doi.org/10.7289/V5T72FNM.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koh, J. H., and C. M. Brierley, 2015: Tropical cyclone genesis potential across palaeoclimates. Climate Past, 11, 14331451, https://doi.org/10.5194/cp-11-1433-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and K. A. Emanuel, 2007: The dynamic response of the winter stratosphere to an equable climate surface temperature gradient. J. Climate, 20, 52135228, https://doi.org/10.1175/2007JCLI1556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, https://doi.org/10.1175/2007JCLI1788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012a: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 43484365, https://doi.org/10.1175/JCLI-D-11-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012b: Variations in tropical cyclone genesis factors in simulations of the Holocene epoch. J. Climate, 25, 81968211, https://doi.org/10.1175/JCLI-D-12-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, M. Huber, and R. Zamora, 2017: Tropical cyclones downscaled from simulations with very high carbon dioxide levels. J. Climate, 30, 649667, https://doi.org/10.1175/JCLI-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, https://doi.org/10.1038/nature13278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020: Statistical-dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios. J. Climate, 33, 48154834, https://doi.org/10.1175/JCLI-D-19-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muglia, J., and A. Schmittner, 2015: Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett., 42, 98629869, https://doi.org/10.1002/2015GL064583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muir, L. C., and A. V. Fedorov, 2015: How the AMOC affects ocean temperatures on decadal to centennial timescales: the North Atlantic versus an interhemispheric seesaw. Climate Dyn., 45, 151160, https://doi.org/10.1007/s00382-014-2443-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 2638.

  • Pausata, F. S. R., K. A. Emanuel, M. Chiacchio, G. T. Diro, Q. Zhang, L. Sushama, J. C. Stager, and J. P. Donnelly, 2017: Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period. Proc. Natl. Acad. Sci. USA, 114, 62216226, https://doi.org/10.1073/pnas.1619111114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., 2013: Sensitivity of Southern Hemisphere circulation to LGM and 4xCO2 climates. Geophys. Res. Lett., 40, 965970, https://doi.org/10.1002/grl.50195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343, https://doi.org/10.1023/A:1005386312622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, https://doi.org/10.1126/science.aaf6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, https://doi.org/10.1175/2010JCLI3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toomey, M. R., W. B. Curry, J. P. Donnelly, and P. J. van Hengstum, 2013: Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank. Paleoceanography, 28, 3141, https://doi.org/10.1002/palo.20012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toomey, M. R., R. L. Korty, J. P. Donnelly, P. J. van Hengstum, and W. B. Curry, 2017: Increased hurricane frequency near Florida during Younger Dryas Atlantic meridional overturning circulation slowdown. Geology, 45, 10471050, https://doi.org/10.1130/G39270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hengstum, P. J., T. S. Winkler, A. E. Tamalavage, R. M. Sullivan, S. N. Little, D. MacDonald, J. P. Donnelly, and N. A. Albury, 2020: Holocene sedimentation in a blue hole surrounded by carbonate tidal flats in the Bahamas: Autogenic versus allogenic processes. Mar. Geol., 419, 106051, https://doi.org/10.1016/j.margeo.2019.106051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, https://doi.org/10.1038/nature06423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dyn., 53, 59996033, https://doi.org/10.1007/s00382-019-04913-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev. Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, https://doi.org/10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., and Z. Zhang, 2017: Dominating roles of ice sheets and insolation in variation of tropical cyclone genesis potential over the North Atlantic during the last 21,000 years. Geophys. Res. Lett., 44, 10 62410 632, https://doi.org/10.1002/2017GL075786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., R. Korty, and Z. Zhang, 2015: Tropical cyclone genesis factors in a simulation of the last two millennia: Results from the Community Earth System Model. J. Climate, 28, 71827202, https://doi.org/10.1175/JCLI-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., T. Wei, R. Korty, J. Kossin, Z. Zhang, and H. Wang, 2016: Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proc. Natl. Acad. Sci. USA, 113, 12 96312 967, https://doi.org/10.1073/pnas.1608950113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., R. Korty, Z. Zhang, and H. Wang, 2019: Evolution of tropical cyclone genesis regions during the Cenozoic era. Nat. Commun., 10, 3076, https://doi.org/10.1038/s41467-019-11110-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., R. Korty, Z. Zhang, C. Brierley, X. Li, and H. Wang, 2020: Large shift of the Pacific Walker circulation across the Cenozoic. Natl. Sci. Rev., https://doi.org/10.1093/nsr/nwaa101, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, J., J. Galewsky, S. J. Camargo, R. Korty, and R. Zamora, 2016: Dynamical downscaling of tropical cyclones from CCSM simulations of the Last Glacial Maximum. J. Adv. Model. Earth Syst., 8, 12291247, https://doi.org/10.1002/2016MS000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, R. A., R. L. Korty, and M. Huber, 2016: Thermal stratification in simulations of hot climates: A climatology using saturation potential vorticity. J. Climate, 29, 50835102, https://doi.org/10.1175/JCLI-D-15-0785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 564 0 0
Full Text Views 576 191 13
PDF Downloads 520 140 10