• Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevacqua, E., D. Maraun, I. Hobæk Haff, M. Widmann, and M. Vrac, 2017: Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrol. Earth Syst. Sci., 21, 27012723, https://doi.org/10.5194/hess-21-2701-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevacqua, E., D. Maraun, M. I. Vousdoukas, E. Voukouvalas, M. Vrac, L. Mentaschi, and M. Widmann, 2019: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevacqua, E., M. I. Vousdoukas, T. G. Shepherd, and M. Vrac, 2020a: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding. Nat. Hazards Earth Syst. Sci., 20, 17651782, https://doi.org/10.5194/nhess-20-1765-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevacqua, E., and Coauthors, 2020b: More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ., 1, 47, https://doi.org/10.1038/s43247-020-00044-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., H. E. Rieder, and Y. Kushnir, 2016: Comparing hurricane and extratropical storm surge for the mid-Atlantic and northeast coast of the United States for 1979–2013. Environ. Res. Lett., 11, 094004, https://doi.org/10.1088/1748-9326/11/9/094004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res., 118, 10 791–10 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. T. Yang, and H. C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 41384147, https://doi.org/10.1175/JCLI-D-12-00463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couasnon, A., and Coauthors, 2020: Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci., 20, 489504, https://doi.org/10.5194/nhess-20-489-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, A. J., and Coauthors, 2017: Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA, 114, 11 86111 866, https://doi.org/10.1073/pnas.1703568114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genest, C., B. Rémillard, and D. Beaudoin, 2009: Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ., 44, 199213, https://doi.org/10.1016/j.insmatheco.2007.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., Q. Zhang, V. P. Singh, and P. Shi, 2017: Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones. Global Planet. Change, 149, 153165, https://doi.org/10.1016/j.gloplacha.2016.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guha-Sapir, D., R. Below, and P. Hoyois, 2018: EM-DAT: The CRED/OFDA International Disaster Database. Université Catholique de Louvain, accessed 9 September 2019, https://public.emdat.be/.

  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, 24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., E. Walsh, K. Hodges, and G. Zappa, 2018: Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett., 13, 124006, https://doi.org/10.1088/1748-9326/aaed59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong Kong Observatory, 2017: Super Typhoon Hato (1713) 20 to 24 August 2017. Accessed 24 September 2019, https://www.weather.gov.hk/informtc/hato17/report.html.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntingford, C., and Coauthors, 2014: Potential influences on the United Kingdom’s floods of winter 2013/14. Nat. Climate Change, 4, 769777, https://doi.org/10.1038/nclimate2314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeuchi, H., Y. Hirabayashi, D. Yamazaki, S. Muis, P. J. Ward, H. C. Winsemius, M. Verlaan, and S. Kanae, 2017: Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh. J. Adv. Model. Earth Syst., 9, 18471862, https://doi.org/10.1002/2017MS000943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012a: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • IPCC, 2012b: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, https://doi.org/10.1175/2008JPO3727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1938: A new measure of rank correlation. Biometrika, 30, 8193, https://doi.org/10.2307/2332226.

  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., and Coauthors, 2020: Greater flood risks in response to slowdown of tropical cyclones over the coast of China. Proc. Natl. Acad. Sci. USA, 117, 14 75114 755, https://doi.org/10.1073/pnas.1918987117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Q. Zhang, Y. D. Chen, and V. P. Singh, 2015: Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards. Global Planet. Change, 124, 107122, https://doi.org/10.1016/j.gloplacha.2014.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, J. J., K. Xu, and C. Ma, 2013: Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrol. Earth Syst. Sci., 17, 679689, https://doi.org/10.5194/hess-17-679-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., G. J. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, https://doi.org/10.1007/s11069-012-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, https://doi.org/10.1038/415514a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moftakhari, H. R., G. Salvadori, A. AghaKouchak, B. F. Sanders, and R. A. Matthew, 2017: Compounding effects of sea level rise and fluvial flooding. Proc. Natl. Acad. Sci. USA, 114, 97859790, https://doi.org/10.1073/pnas.1620325114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelsen, R. B., 2006: An Introduction to Copulas. 2nd ed., Springer, 272 pp.

  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paprotny, D., O. Morales-Nápoles, and S. N. Jonkman, 2018: HANZE: A pan-European database of exposure to natural hazards and damaging historical floods since 1870. Earth Syst. Sci. Data, 10, 565581, https://doi.org/10.5194/essd-10-565-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvadori, G., and C. De Michele, 2004: Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res., 40, W12511, https://doi.org/10.1029/2004WR003133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, D., and Coauthors, 2015: Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. J. Hydrol., 530, 785798, https://doi.org/10.1016/j.jhydrol.2015.10.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., L. Wang, and S. Osprey, 2020a: The Southern Hemisphere sudden stratospheric warming of September 2019. Sci. Bull., 65, 18001802, https://doi.org/10.1016/j.scib.2020.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., L. Wang, and S. Osprey, 2020b: Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett., 47, e2020GL089343, https://doi.org/10.1029/2020GL089343.

    • Search Google Scholar
    • Export Citation
  • Svensson, C., and D. A. Jones, 2002: Dependence between extreme sea surge, river flow and precipitation in eastern Britain. Int. J. Climatol., 22, 11491168, https://doi.org/10.1002/joc.794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, C., and D. A. Jones, 2004: Dependence between sea surge, river flow and precipitation in south and west Britain. Hydrol. Earth Syst. Sci., 8, 973992, https://doi.org/10.5194/hess-8-973-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., E. van Meijgaard, P. de Valk, K. J. van Heeringen, and J. Gooijer, 2015: Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vousdoukas, M. I., L. Mentaschi, E. Voukouvalas, M. Verlaan, S. Jevrejeva, L. P. Jackson, and L. Feyen, 2018: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther, 2015: Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Climate Change, 5, 10931097, https://doi.org/10.1038/nclimate2736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., Y. Xu, N. Wei, S. Wang, and H. Hu, 2019: Forecast and service performance on rapidly intensification process of Typhoons Rammasun (2014) and Hato (2017). Trop. Cyclone Res. Rev., 8, 1826, https://doi.org/10.1016/j.tcrr.2019.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, https://doi.org/10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, P. J., and Coauthors, 2018: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., J. R. Hunter, M. Marcos, P. Caldwell, M. Menéndez, and I. Haigh, 2016: Towards a global higher-frequency sea level dataset. Geosci. Data J., 3, 5059, https://doi.org/10.1002/gdj3.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., K. Xu, L. Bin, J. Lian, and C. Ma, 2018: Joint risk of rainfall and storm surges during typhoons in a coastal city of Haidian Island, China. Int. J. Environ. Res. Public Health, 15, 1377, https://doi.org/10.3390/ijerph15071377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., K. Xu, J. Lian, and C. Ma, 2019: Compound effects of rainfall and storm tides on coastal flooding risk. Stochastic Environ. Res. Risk Assess., 33, 12491261, https://doi.org/10.1007/s00477-019-01695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I. S. Kang, 2020: Intraseasonal variations of the British–Baikal corridor pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Murakami, T. R. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion in a changing climate. Sci. Adv., 6, eaaz7610, https://doi.org/10.1126/sciadv.aaz7610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Y. Lai, X. Gu, P. Shi, and V. P. Singh, 2018b: Tropical cyclonic rainfall in China: Changing properties, seasonality, and causes. J. Geophys. Res., 123, 44764489, https://doi.org/10.1029/2017JD028119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018a: Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., S. Westra, and S. A. Sisson, 2013: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. J. Hydrol., 505, 172187, https://doi.org/10.1016/j.jhydrol.2013.09.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2018: Future climate risk from compound events. Nat. Climate Change, 8, 469477, https://doi.org/10.1038/s41558-018-0156-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 358 358 63
Full Text Views 76 76 17
PDF Downloads 117 117 32

Global Compound Floods from Precipitation and Storm Surge: Hazards and the Roles of Cyclones

View More View Less
  • 1 a Department of Geography, Hong Kong Baptist University, Hong Kong, China
  • | 2 b Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Ministry of Natural Resources, Shenzhen University, Shenzhen, China
  • | 3 c Guangdong-Hong Kong Joint Laboratory for Water Security, Hong Kong Baptist University, Hong Kong, China
  • | 4 d Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
  • | 5 e Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
  • | 6 f Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
  • | 7 g School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During simultaneous or successive occurrences of precipitation and storm surges, the interplay of the two types of extremes can exacerbate the impact to a greater extent than either of them in isolation. The compound flood hazards from precipitation and storm surges vary across regions of the world because of the various weather conditions. By analyzing in situ observations of precipitation and storm surges across the globe, we found that the return periods of compound floods with marginal values exceeding the 98.5th percentile (i.e., equivalent to a joint return period of 12 years if the marginal variables are independent) are <2 years in most areas, while those in northern Europe are >8 years due to weaker dependence. Our quantitative assessment shows that cyclones [i.e., tropical cyclones (TCs) and extratropical cyclones (ETCs)] are the major triggers of compound floods. More than 80% of compound floods in East Asia and >50% of those in the Gulf of Mexico and northern Australia are associated with TCs, while in northern Europe and the higher-latitude coast of North America, ETCs contribute to the majority of compound floods (i.e., 80%). Weather patterns characterized by deep low pressure, cyclonic wind, and abundant precipitable water content are conducive to the occurrence of compound floods. Extreme precipitation and extreme storm surges over Europe tend to occur in different months, which explains the relatively lower probability of compound floods in Europe. The comprehensive hazard assessment of global compound floods in this study serves as an important reference for flood risk management in coastal regions across the globe.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jianfeng Li, jianfengli@hkbu.edu.hk; Xihui Gu, guxh@cug.edu.cn

Abstract

During simultaneous or successive occurrences of precipitation and storm surges, the interplay of the two types of extremes can exacerbate the impact to a greater extent than either of them in isolation. The compound flood hazards from precipitation and storm surges vary across regions of the world because of the various weather conditions. By analyzing in situ observations of precipitation and storm surges across the globe, we found that the return periods of compound floods with marginal values exceeding the 98.5th percentile (i.e., equivalent to a joint return period of 12 years if the marginal variables are independent) are <2 years in most areas, while those in northern Europe are >8 years due to weaker dependence. Our quantitative assessment shows that cyclones [i.e., tropical cyclones (TCs) and extratropical cyclones (ETCs)] are the major triggers of compound floods. More than 80% of compound floods in East Asia and >50% of those in the Gulf of Mexico and northern Australia are associated with TCs, while in northern Europe and the higher-latitude coast of North America, ETCs contribute to the majority of compound floods (i.e., 80%). Weather patterns characterized by deep low pressure, cyclonic wind, and abundant precipitable water content are conducive to the occurrence of compound floods. Extreme precipitation and extreme storm surges over Europe tend to occur in different months, which explains the relatively lower probability of compound floods in Europe. The comprehensive hazard assessment of global compound floods in this study serves as an important reference for flood risk management in coastal regions across the globe.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jianfeng Li, jianfengli@hkbu.edu.hk; Xihui Gu, guxh@cug.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.97 MB)
Save