• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bador, M., L. Terray, and J. Boé, 2016: Emergence of human influence on summer record–breaking temperatures over Europe. Geophys. Res. Lett., 43, 404412, https://doi.org/10.1002/2015GL066560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belleflamme, A., X. Fettweis, and M. Erpicum, 2015: Do global warming–induced circulation pattern changes affect temperature and precipitation over Europe during summer? Int. J. Climatol., 35, 14841499, https://doi.org/10.1002/joc.4070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., D. Fortuny, G. J. van Oldenborgh, and B. Liebmann, 2012: The summer North Atlantic Oscillation in CMIP3 models and related uncertainties in projected summer drying in Europe. J. Geophys. Res. Atmos., 117, D16104, https://doi.org/10.1029/2012JD017816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boberg, F., and J. H. Christensen, 2012: Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat. Climate Change, 2, 433436, https://doi.org/10.1038/nclimate1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., and L. Terray, 2014: Land–sea contrast, soil-atmosphere and cloud-temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, https://doi.org/10.1007/s00382-013-1868-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, C. Cassou, and J. Najac, 2009: Uncertainties in European summer precipitation changes: Role of large scale circulation. Climate Dyn., 33, 265276, https://doi.org/10.1007/s00382-008-0474-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., S. Somot, L. Corre, and P. Nabat, 2020a: Large discrepancies in summer climate change over Europe as projected by global and regional climate models: Causes and consequences. Climate Dyn., 54, 29813002, https://doi.org/10.1007/s00382-020-05153-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., and Coauthors, 2020b: Past long-term summer warming over western Europe in new generation climate models: Role of large-scale atmospheric circulation. Environ. Res. Lett., 15, 084038, https://doi.org/10.1088/1748-9326/ab8a89.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brogli, R., S. L. Sørland, N. Kröner, and C. Schär, 2019: Causes of future Mediterranean precipitation decline depend on the season. Environ. Res. Lett., 14, 114017, https://doi.org/10.1088/1748-9326/ab4438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornes, R. C., G. van der Schrier, E. J. M. van den Besselaar, and P. D. Jones, 2018: An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos., 123, 93919409, https://doi.org/10.1029/2017JD028200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, T. Woollings, and K. Hodges, 2013: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett., 8, 034037, https://doi.org/10.1088/1748-9326/8/3/034037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2019: Impacts of the North Atlantic warming hole in future climate projections: Mean atmospheric circulation and the North Atlantic jet. J. Climate, 32, 26732689, https://doi.org/10.1175/JCLI-D-18-0647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grillakis, M. G., 2019: Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ., 660, 12451255, https://doi.org/10.1016/j.scitotenv.2019.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. Selten, B. van den Hurk, W. Hazeleger, and X. Wang, 2009: Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys. Res. Lett., 36, L04705, https://doi.org/10.1029/2008GL036617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. Selten, and S. S. Drijfhout, 2015: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nat. Commun., 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E. S., R. L. Gianotti, and E. A. B. Eltahir, 2014: Improving the simulation of the West African monsoon using the MIT regional climate model. J. Climate, 27, 22092229, https://doi.org/10.1175/JCLI-D-13-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kew, S., S. Y. Philip, G. Jan van Oldenborgh, G. van der Schrier, F. E. L. Otto, and R. Vautard, 2019: The exceptional summer heat wave in southern Europe 2017. Bull. Amer. Meteor. Soc., 100 (1), S49S53, https://doi.org/10.1175/BAMS-D-18-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knist, S., and Coauthors, 2017: Land–atmosphere coupling in EURO-CORDEX evaluation experiments. J. Geophys. Res. Atmos., 122, 79103, https://doi.org/10.1002/2016JD025476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lionello, P., and L. Scarascia, 2018: The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change, 18, 14811493, https://doi.org/10.1007/s10113-018-1290-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, https://doi.org/10.1073/pnas.1204330109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orth, R., and S. I. Seneviratne, 2017: Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the Community Earth System Model. J. Climate, 30, 21412162, https://doi.org/10.1175/JCLI-D-15-0567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orth, R., J. Zscheischler, and S. I. Seneviratne, 2016: Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep., 6, 28334, https://doi.org/10.1038/srep28334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951410, https://doi.org/10.1175/BAMS-88-9-1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne, 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, https://doi.org/10.1038/nclimate1536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27, 281299, https://doi.org/10.1007/s00382-006-0125-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., and Coauthors, 2018: Anthropogenic warming exacerbates European soil moisture droughts. Nat. Climate Change, 8, 421426, https://doi.org/10.1038/s41558-018-0138-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandler, D., and N. Harnik, 2020: Future wintertime meridional wind trends through the lens of subseasonal teleconnections. Wea. Climate Dyn., 1, 427443, https://doi.org/10.5194/wcd-1-427-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., H. Liu, N. Henderson, I. R. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, https://doi.org/10.1175/JCLI-D-13-00446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, https://doi.org/10.1038/nclimate2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, https://doi.org/10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuel, A., and E. A. B. Eltahir, 2020: Why is the Mediterranean a climate change hot spot? J. Climate, 33, 58295843, https://doi.org/10.1175/JCLI-D-19-0910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuel, A., S. Kang, and E. A. B. Eltahir, 2021a: Understanding climate change over the southwestern Mediterranean using high-resolution simulations. Climate Dyn., 56, 9851001, https://doi.org/10.1007/s00382-020-05516-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuel, A., P. A. O’Gorman, and E. A. B. Eltahir, 2021b: Elements of the dynamical response to climate change over the Mediterranean. J. Climate, 34, 11351146, https://doi.org/10.1175/JCLI-D-20-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, https://doi.org/10.1029/2006GL028001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2020: Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett., 15, 094077, https://doi.org/10.1088/1748-9326/aba3d4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., A. J. Dolman, and A. Alessandri, 2011: A summer climate regime over Europe modulated by the North Atlantic Oscillation. Hydrol. Earth Syst. Sci., 15, 5764, https://doi.org/10.5194/hess-15-57-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., 2019: Regional climate impacts of future changes in the mid-latitude atmospheric circulation: A storyline view. Curr. Climate Change Rep., 5, 358371, https://doi.org/10.1007/s40641-019-00146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 438 437 24
Full Text Views 165 163 5
PDF Downloads 202 199 8

Mechanisms of European Summer Drying under Climate Change

View More View Less
  • 1 aInstitute of Geography, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • | 2 bRalph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
Restricted access

Abstract

The geography of Europe as a continental landmass, located between the arid Sahara and the cold high latitudes (both are dry in terms of absolute humidity), dictates the reliance during summer of southern Europe (south of 45°N) on stored water from winter and spring, and of northwestern Europe on a small concentrated low-level moisture jet from the North Atlantic. In a recent study, we explained the projected winter precipitation decline over the Mediterranean under climate change as due to shifts in upper tropospheric stationary waves and to the regional-scale land–water warming contrast. Here, based on the analysis of observations and output from models from phase 5 of the Coupled Model Intercomparison Project, we expand this theory further, documenting how the winter precipitation decline expands into southern Europe during spring, dictated by similar dynamical mechanisms, depleting soil moisture and setting the stage for drier summers via soil moisture–precipitation feedbacks. Over northwestern Europe, an anomalous anticyclonic circulation west of the British Isles displaces the low-level moisture jet northward, limiting moisture supply, and reducing low-level relative humidity and rainfall. Finally, we discuss how this comprehensive perspective of European summer climate change can help us better understand the variations across model projections, and pave the way for their reduction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre Tuel, alexandre.tuel@giub.unibe.ch

Abstract

The geography of Europe as a continental landmass, located between the arid Sahara and the cold high latitudes (both are dry in terms of absolute humidity), dictates the reliance during summer of southern Europe (south of 45°N) on stored water from winter and spring, and of northwestern Europe on a small concentrated low-level moisture jet from the North Atlantic. In a recent study, we explained the projected winter precipitation decline over the Mediterranean under climate change as due to shifts in upper tropospheric stationary waves and to the regional-scale land–water warming contrast. Here, based on the analysis of observations and output from models from phase 5 of the Coupled Model Intercomparison Project, we expand this theory further, documenting how the winter precipitation decline expands into southern Europe during spring, dictated by similar dynamical mechanisms, depleting soil moisture and setting the stage for drier summers via soil moisture–precipitation feedbacks. Over northwestern Europe, an anomalous anticyclonic circulation west of the British Isles displaces the low-level moisture jet northward, limiting moisture supply, and reducing low-level relative humidity and rainfall. Finally, we discuss how this comprehensive perspective of European summer climate change can help us better understand the variations across model projections, and pave the way for their reduction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre Tuel, alexandre.tuel@giub.unibe.ch

Supplementary Materials

    • Supplemental Materials (PDF 3.19 MB)
Save