• Albright, M. D., E. E. Recker, R. J. Reed, and R. Dang, 1985: The diurnal variation of deep convection and inferred precipitation in the central tropical Pacific during January–February 1979. Mon. Wea. Rev., 113, 16631680, https://doi.org/10.1175/1520-0493(1985)113<1663:TDVODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., 1984: The diurnal variation of large-scale inferred rainfall over the tropical Pacific Ocean during August 1979. Mon. Wea. Rev., 112, 17451751, https://doi.org/10.1175/1520-0493(1984)112<1745:TDVOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D21104, https://doi.org/10.1029/2005JD005763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., and S. E. Yuter, 2015: Subdiurnal stratocumulus cloud fraction variability and sensitivity to precipitation. J. Climate, 28, 29682985, https://doi.org/10.1175/JCLI-D-14-00648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service climate data store, accessed 10 October 2020, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W.-Y., D. Kim, A. Rowe, Y. Moon, and S. Wang, 2020: Mechanisms of convective clustering during a 2-day rain event in AMIE/DYNAMO. J. Adv. Model. Earth Syst., 12, e2019MS001907, https://doi.org/10.1029/2019MS001907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74, 11491168, https://doi.org/10.1175/JAS-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Paola, F., E. Ricciardelli, D. Cimini, F. Romano, M. Viggiano, and V. Cuomo, 2014: Analysis of Catania flash flood case study by using combined microwave and infrared technique. J. Hydrometeor., 15, 19891998, https://doi.org/10.1175/JHM-D-13-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. De Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, https://doi.org/10.1007/s003820050316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and C. D. Kummerow, 2013: A multisensor observational depiction of the transition from light to heavy rainfall on subdaily time scales. J. Atmos. Sci., 70, 23092324, https://doi.org/10.1175/JAS-D-12-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., and M. J. McPhaden, 1996: Enhancement of tropical ocean evaporation and sensible heat flux by atmospheric mesoscale systems. J. Climate, 9, 23072325, https://doi.org/10.1175/1520-0442(1996)009<2307:EOTOEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, https://doi.org/10.1175/JCLI4297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garg, P., S. W. Nesbitt, T. J. Lang, G. Priftis, T. Chronis, J. D. Thayer, and D. A. Hence, 2020: Identifying and characterizing tropical oceanic mesoscale cold pools using spaceborne scatterometer winds. J. Geophys. Res. Atmos., 125, e2019JD031812, https://doi.org/10.1029/2019JD031812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., T. P. Lane, and S. C. van den Heever, 2018: The role of cold pools in tropical oceanic convective systems. J. Atmos. Sci., 75, 26152634, https://doi.org/10.1175/JAS-D-17-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., T. Meissner, F. J. Wentz, and S. T. Brown, 2016: Ocean vector winds from WindSat two-look polarimetric radiances. IEEE Trans. Geosci. Remote Sens., 54, 918931, https://doi.org/10.1109/TGRS.2015.2469633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., L. Kornblueh, D. Klocke, T. Becker, G. Cioni, J. F. Engels, U. Schulzweida, and B. Stevens, 2020: Climate statistics in global simulations of the atmosphere, from 80 to 2.5 km grid spacing. J. Meteor. Soc. Japan, 98, 7391, https://doi.org/10.2151/jmsj.2020-005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16-years of the tropical rainfall measuring mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., C. Hu, X. Huang, Y. Chu, Y. Tseng, G. J. Zhang, and Y. Lin, 2018: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Climate Dyn., 51, 31453159, https://doi.org/10.1007/s00382-018-4071-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2016: The influence of African easterly waves on convection over tropical Africa and the east Atlantic. Mon. Wea. Rev., 144, 171192, https://doi.org/10.1175/MWR-D-14-00419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half hourly 4 km global (60S–60N) merged IR V1. Goddard Earth Sciences Data and Information Services Central (GES DISC), Greenbelt, MD, accessed 15 September 2020, https://doi.org/10.5067/P4HZB9N27EKU.

    • Crossref
    • Export Citation
  • Johnson, R. H., 2011: Diurnal cycle of monsoon convection. The Global Monsoon System: Research and Forecast, 2nd ed. C.-P. Chang et al., Eds., World Scientific, 257–276, https://doi.org/10.1142/9789814343411_0015.

    • Crossref
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2018: Evaluation of satellite surface winds in relation to weather regimes over the Indian Ocean using dynamo observations. J. Geophys. Res. Atmos., 123, 85618580, https://doi.org/10.1029/2018JD028292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2020: A 20-year climatology of Madden-Julian oscillation convection: Large-scale precipitation tracking from TRMM-GPM rainfall. J. Geophys. Res. Atmos., 125, e2019JD032142, https://doi.org/10.1029/2019JD032142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, https://doi.org/10.1175/2007JCLI2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T. J., and S.-P. Xie, 2015: ASCAT observations of downdrafts from mesoscale convective systems. Geophys. Res. Lett., 42, 19511958, https://doi.org/10.1002/2015GL063025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., 2017: Investigating the seasonal and diurnal cycles of ocean vector winds near the Philippines using RapidScat and CCMP. J. Geophys. Res. Atmos., 122, 96689684, https://doi.org/10.1002/2017JD027516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, W., M. Portabella, A. Stoffelen, and A. Verhoef, 2017: Toward an improved wind inversion algorithm for RapidScat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 21562164, https://doi.org/10.1109/JSTARS.2016.2616889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madsen, N. M., and D. G. Long, 2016: Calibration and validation of the Rapidscat scatterometer using tropical rainforests. IEEE Trans. Geosci. Remote Sens., 54, 28462854, https://doi.org/10.1109/TGRS.2015.2506463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208, https://doi.org/10.1175/2008JAS2746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGarry, M. M., and R. J. Reed, 1978: Diurnal variations in convective activity and precipitation during Phases II and III of GATE. Mon. Wea. Rev., 106, 101113, https://doi.org/10.1175/1520-0493(1978)106<0101:DVICAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2010: The global tropical moored buoy array. Proc. Ocean Obs., 9, 668682, https://doi.org/10.5270/OceanObs09.cwp.61.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Miura, M. Satoh, A. T. Noda, and K. Oouchi, 2009: Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. J. Meteor. Soc. Japan, 87, 335345, https://doi.org/10.2151/jmsj.87.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, and H. Tomita, 2012: Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization. J. Climate, 25, 51195134, https://doi.org/10.1175/JCLI-D-11-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., Y.-L. Chen, J. Russell, and S.-T. Soong, 1979: On the formation of organized convective systems observed over the eastern Atlantic. Mon. Wea. Rev., 107, 426441, https://doi.org/10.1175/1520-0493(1979)107<0426:OTFOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paget, A. C., D. G. Long, and N. M. Madsen, 2016: RapidScat diurnal cycles over land. IEEE Trans. Geosci. Remote Sens., 54, 33363344, https://doi.org/10.1109/TGRS.2016.2515022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K., and Coauthors, 2001: SeaWinds on QuikSCAT level 3 daily, gridded ocean wind vectors (JPL seawinds project), version 1.1. JPL Document D-20335, Jet Propulsion Laboratory, 39 pp.

  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, https://doi.org/10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portabella, M., A. Stoffelen, W. Lin, A. Turiel, A. Verhoef, J. Verspeek, and J. Ballabrera-Poy, 2012: Rain effects on ASCAT-retrieved winds: Toward an improved quality control. IEEE Trans. Geosci. Remote Sens., 50, 24952506, https://doi.org/10.1109/TGRS.2012.2185933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafati, S., and M. Karimi, 2017: Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran. Theor. Appl. Climatol., 129, 539549, https://doi.org/10.1007/s00704-016-1797-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1994: Convective processes and tropical atmospheric circulations. Quart. J. Roy. Meteor. Soc., 120, 14311455, https://doi.org/10.1002/qj.49712052002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and K. D. Jaffe, 1981: Diurnal variation of summer convection over West Africa and the tropical eastern Atlantic during 1974 and 1978. Mon. Wea. Rev., 109, 25272534, https://doi.org/10.1175/1520-0493(1981)109<2527:DVOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. J. Wentz, 2015: A scatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011. J. Atmos. Oceanic Technol., 32, 18291846, https://doi.org/10.1175/JTECH-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, https://doi.org/10.1029/2008GL036779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., T. Fiolleau, and D. Bouniol, 2017: A simple model of the life cycle of mesoscale convective systems cloud shield in the tropics. J. Climate, 30, 42834298, https://doi.org/10.1175/JCLI-D-16-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze, 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, https://doi.org/10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2016: On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst., 8, 669690, https://doi.org/10.1002/2015MS000610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and C. Hohenegger, 2018: Diurnal circulation adjustment and organized deep convection. J. Climate, 31, 48994916, https://doi.org/10.1175/JCLI-D-17-0693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and D. Klocke, 2019: The two diurnal modes of tropical upward motion. Geophys. Res. Lett., 46, 29112921, https://doi.org/10.1029/2018GL081806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, https://doi.org/10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., and J. D. Neelin, 2019: Deep convective organization, moisture vertical structure, and convective transition using deep-inflow mixing. J. Atmos. Sci., 76, 965987, https://doi.org/10.1175/JAS-D-18-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, https://doi.org/10.1175/JAS-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2015: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley and Sons, 384 pp.

  • SeaPAC, 2015: RapidScat level 2B ocean wind vectors in 12.5km slice composites version 1.1. NASA PO.DAAC, accessed 16 October 2019, https://doi.org/10.5067/RSX12-L2B11.

    • Crossref
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2004: In situ observations of diurnal variability in rainfall over the tropical Pacific and Atlantic Oceans. J. Climate, 17, 34963509, https://doi.org/10.1175/1520-0442(2004)017<3496:ISOODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758765, https://doi.org/10.1002/qj.49709540609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., D. Mansfield, and J. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 4776, https://doi.org/10.1002/qj.49710343504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and W.-K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 20162034, https://doi.org/10.1175/1520-0469(1980)037<2016:RODTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2019: DYAMOND: The dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci., 6, 61, https://doi.org/10.1186/s40645-019-0304-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655, https://doi.org/10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree V7 (TRMM_3B42). NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, accessed 16 October 2019, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Crossref
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Stoffelen, C. Zhao, J. Vogelzang, A. Verhoef, J. Verspeek, M. Lin, and G. Chen, 2017: An SST-dependent Ku-band geophysical model function for RapidSCAT. J. Geophys. Res. Oceans, 122, 34613480, https://doi.org/10.1002/2016JC012619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., M. Köhler, R. Bennartz, and C. O’Dell, 2009: The diurnal cycle of surface divergence over the global oceans. Quart. J. Roy. Meteor. Soc., 135, 14841493, https://doi.org/10.1002/qj.451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worku, L. Y., A. Mekonnen, and C. J. Schreck III, 2019: Diurnal cycle of rainfall and convection over the Maritime Continent using TRMM and ISCCP. Int. J. Climatol., 39, 51915200, https://doi.org/10.1002/joc.6121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and S. Guimond, 2006: Two-and three-dimensional cloud-resolving model simulations of the mesoscale enhancement of surface heat fluxes by precipitating deep convection. J. Climate, 19, 139149, https://doi.org/10.1175/JCL3610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. Zhang, 2018: Evaluation of ISS-RapidScat wind vectors using buoys and ASCAT data. Remote Sens., 10, 648, https://doi.org/10.3390/rs10040648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. Ledvina, and C. Fairall, 1992: Influence of precipitating convection on the surface energy budget observed during a tropical ocean global atmosphere pilot cruise in the tropical western Pacific Ocean. J. Geophys. Res. Oceans, 97, 95959603, https://doi.org/10.1029/92JC00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, https://doi.org/10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131, 780798, https://doi.org/10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 366 366 20
Full Text Views 97 97 22
PDF Downloads 135 135 30

Diurnal Cycle of Tropical Oceanic Mesoscale Cold Pools

View More View Less
  • 1 a University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 b NASA Marshall Space Flight Center, Huntsville, Alabama
  • | 3 c University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical convection regimes range from deep organized to shallow convective systems. Mesoscale processes such as cold pools within tropical convective systems can play a significant role in the evolution of convection over land and open ocean. Although cold pools are widely observed, their diurnal properties are not well understood over tropical oceans and land. The oceanic cold pool identification metric applied herein uses the gradient feature (GF) technique and is compared with diurnally resolved buoy-identified thermal cold pools. This study provides a first-ever diurnal climatology of GF number, area, and attributed TRMM 3B42 precipitation using a spaceborne scatterometer (RapidSCAT). Buoy data over the Pacific, Atlantic, and Indian Oceans have been used to validate and examine the RapidSCAT-identified diurnal cycle of GF number and precipitation. Buoy-observed cold pool duration, precipitation, temperature, and wind speed is analyzed to understand the in situ cold pool properties over tropical oceans. GF- and buoy-observed cold pool number and precipitation exhibits a similar bimodal diurnal variability with morning and afternoon maxima, thus establishing confidence in using GF as a proxy to observe cold pools over tropical oceans. The morning peak is attributed to cold pools associated with deep moist convection while the afternoon peak is related to shallower clouds in relatively drier environments resulting in smaller cold pools over global tropical oceans.

Significance Statement

The global diurnal cycle of oceanic convectively generated cold pools (cool outflows from convection) is observed for the first time using the gradient feature method—revealing a bimodal distribution of cold pools organized by deep, organized convective systems in the early morning and afternoon cold pools predominated by shallower, more isolated convection. This analysis will provide a reference for high-resolution climate models to mimic in order to accurately represent key processes that organize convection and govern air–sea interactions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Piyush Garg, pgarg7@illinois.edu

Abstract

Tropical convection regimes range from deep organized to shallow convective systems. Mesoscale processes such as cold pools within tropical convective systems can play a significant role in the evolution of convection over land and open ocean. Although cold pools are widely observed, their diurnal properties are not well understood over tropical oceans and land. The oceanic cold pool identification metric applied herein uses the gradient feature (GF) technique and is compared with diurnally resolved buoy-identified thermal cold pools. This study provides a first-ever diurnal climatology of GF number, area, and attributed TRMM 3B42 precipitation using a spaceborne scatterometer (RapidSCAT). Buoy data over the Pacific, Atlantic, and Indian Oceans have been used to validate and examine the RapidSCAT-identified diurnal cycle of GF number and precipitation. Buoy-observed cold pool duration, precipitation, temperature, and wind speed is analyzed to understand the in situ cold pool properties over tropical oceans. GF- and buoy-observed cold pool number and precipitation exhibits a similar bimodal diurnal variability with morning and afternoon maxima, thus establishing confidence in using GF as a proxy to observe cold pools over tropical oceans. The morning peak is attributed to cold pools associated with deep moist convection while the afternoon peak is related to shallower clouds in relatively drier environments resulting in smaller cold pools over global tropical oceans.

Significance Statement

The global diurnal cycle of oceanic convectively generated cold pools (cool outflows from convection) is observed for the first time using the gradient feature method—revealing a bimodal distribution of cold pools organized by deep, organized convective systems in the early morning and afternoon cold pools predominated by shallower, more isolated convection. This analysis will provide a reference for high-resolution climate models to mimic in order to accurately represent key processes that organize convection and govern air–sea interactions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Piyush Garg, pgarg7@illinois.edu
Save