• Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 29632978, https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y. H. Lee, and J. M. Wallace, 1984: Horizontal structure of 500-mb height fluctuations with long, intermediate, and short time scales. J. Atmos. Sci., 41, 961979, https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. B. Feldstein, B. Tan, and S. Lee, 2017: Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. J. Climate, 30, 31393155, https://doi.org/10.1175/JCLI-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., M. Déqué, F. Valero, and D. B. Stephenson, 1998: North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, 50A, 573595, https://doi.org/10.3402/tellusa.v50i5.14560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J., 1992: A description of low-frequency atmospheric oscillations over the extratropical Northern Hemisphere using singular spectrum analysis. Geophys. Res. Lett., 19, 17751778, https://doi.org/10.1029/92GL01880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., W. H. Schubert, and J. J. Hack, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53, 929945, https://doi.org/10.1175/1520-0469(1996)053<0929:DAOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., K. Masuda, and T. Yasunari, 2012: Spatiotemporal structures of the intraseasonal oscillations of precipitation over northern Eurasia during summer. Int. J. Climatol., 32, 710726, https://doi.org/10.1002/joc.2293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., H. Lin, and Z. Wu, 2011: Another look at influences of the Madden–Julian oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, https://doi.org/10.1029/2010JD014787.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the south Indian Ocean: El Niño–Southern oscillation and Madden–Julian oscillation effects. J. Geophys. Res., 111, D22101, https://doi.org/10.1029/2006JD007289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2018: Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers. J. Climate, 31, 92839292, https://doi.org/10.1175/JCLI-D-18-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406, https://doi.org/10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K. M., G. Huang, R. G. Wu, and L. Wang, 2018: Structure and dynamics of a wave train along the wintertime Asian jet and its impact on East Asian climate. Climate Dyn., 51, 41234137, https://doi.org/10.1007/s00382-017-3674-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden–Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, https://doi.org/10.1029/2004JD005408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, https://doi.org/10.1175/2007JCLI1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., L. Chen, F. Ren, and C. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521533, https://doi.org/10.1007/s00376-010-9118-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N.-C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, https://doi.org/10.1175/2007JCLI2024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, https://doi.org/10.1175/JCLI-D-11-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., R. G. Wu, and L. Song, 2019: Individual and combined impacts of two Eurasian wave trains on intraseasonal East Asian winter monsoon variability. J. Geophys. Res., 124, 45304548, https://doi.org/10.1029/2018JD029953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and mid-latitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867890, https://doi.org/10.2151/jmsj1965.74.6_867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, X., J. Mao, and G. Wu, 2017: Influence on the South China rainfall anomalies of the atmospheric quasi-biweekly oscillation in mid-high latitude during the summer of 2002 (in Chinese). Chin. J. Atmos. Sci., 41, 12041220.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1987: Retrograding wintertime low-frequency disturbances over the North Pacific Ocean. J. Atmos. Sci., 44, 27272742, https://doi.org/10.1175/1520-0469(1987)044<2727:RWLFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. Y. Weng, 2002: Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. J. Meteor. Soc. Japan, 80, 13091324, https://doi.org/10.2151/jmsj.80.1309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, https://doi.org/10.1175/2007JCLI1955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Wen, J. He, and R. Zhang, 2012: Characteristics of the northeast cold vortex at intraseasonal timescale and its impact (in Chinese). Chin. J. Atmos. Sci., 36, 959973.

    • Search Google Scholar
    • Export Citation
  • Lofverstrom, M., 2020: A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett., 534, 116081, https://doi.org/10.1016/j.epsl.2020.116081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, S. L., M. Ghil, and J. O. Dickey, 1996: The extratropical 40-day oscillation in the UCLA general circulation model. Part II: Spatial structure. J. Atmos. Sci., 53, 19932014, https://doi.org/10.1175/1520-0469(1996)053<1993:TEDOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 1999: Alternating wet and dry episodes over California and intraseasonal oscillations. Mon. Wea. Rev., 127, 27592776, https://doi.org/10.1175/1520-0493(1999)127<2759:AWADEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, S. Yang, and J.-H. Jeong, 2010: Influences of Arctic Oscillation and Madden–Julian oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res., 115, D23122, https://doi.org/10.1029/2010JD014794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236, https://doi.org/10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X., X.-Q. Yang, and H. Hu, 2017: Subseasonal variations of wintertime North Pacific evaporation, cold air surges, and water vapor transport. J. Climate, 30, 94759491, https://doi.org/10.1175/JCLI-D-17-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., and M. Takahashi, 2003: Formation mechanism of vorticity anomalies on the subtropical jet in the midsummer Northern Hemisphere. Theor. Appl. Mech. Japan, 52, 109115, https://doi.org/10.11345/nctam.52.109.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., and G. Plaut, 2001: Space-time analysis of geopotential height and SLP, intraseasonal oscillations, weather regimes, and local climates over the North Atlantic and Europe. Climate Res., 17, 325342, https://doi.org/10.3354/cr017325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., and V. Krishnamurthy, 2019: Intra-seasonal and seasonal variability of the Northern Hemisphere extra-tropics. Climate Dyn., 53, 48214839, https://doi.org/10.1007/s00382-019-04827-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 65976616, https://doi.org/10.1175/JCLI-D-15-0549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of U.S. heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. W. Robertson, and D. L. T. Anderson, 2012: Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bull., 61, 2328.

    • Search Google Scholar
    • Export Citation
  • Wang, B., P. Webster, K. Kikuchi, T. Yasunari, and Y. J. Qi, 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27, 661675, https://doi.org/10.1007/s00382-006-0163-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, T. J. Zhou, and X. Y. Rong, 2013: Origin of the intraseasonal variability over the North Pacific in boreal summer. J. Climate, 26, 12111229, https://doi.org/10.1175/JCLI-D-11-00704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., W. H. Li, Y. Deng, and S. Yang, 2019: Intraseasonal variation of the summer rainfall over the southeastern United States. Climate Dyn., 53, 11711183, https://doi.org/10.1007/s00382-018-4345-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., S. Zeng, and S. Yao, 2017: The intraseasonal oscillations of the winter geopotential height over the North Pacific and its diagnosis (in Chinese). Trans. Atmos. Sci., 40, 280287.

    • Search Google Scholar
    • Export Citation
  • Xiong, Y., Q. Chen, and X. Ren, 2019: Influence of boreal winter intraseasonal variation of Aleutian low on water vapor transport and atmospheric rivers. Atmosphere, 10, 49, https://doi.org/10.3390/atmos10020049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal Corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and T. Li, 2016: Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter. Climate Dyn., 47, 21552175, https://doi.org/10.1007/s00382-015-2956-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., B. Wu, R. Zhang, and S. Zhou, 2013: The zonal propagating characteristics of low-frequency oscillation over the Eurasian mid-high latitude in boreal summer. Sci. China Earth Sci., 56, 15661575, https://doi.org/10.1007/s11430-012-4576-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., Q. Huang, B. Zhu, and F. Liu, 2018: The 10–30-day oscillation of winter zonal wind in the entrance region of the East Asian subtropical jet and its relationship with precipitation in southern China. Dyn. Atmos. Oceans, 82, 7688, https://doi.org/10.1016/j.dynatmoce.2018.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S., K. Gong, and C. Zhao, 2016: Intraseasonal oscillation of the winter geopotential height in the middle latitude of Northern Hemisphere (in Chinese). J. Meteor. Sci., 36, 622628.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., B. Wang, and Q. Zeng, 2009: Impact of the Madden–Julian oscillation on summer rainfall in southeast China. J. Climate, 22, 201216, https://doi.org/10.1175/2008JCLI1959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and X. Ren, 2017: Low-frequency variability of the Aleutian low and its related synoptic transient eddy dynamic process (in Chinese). J. Meteor. Sci., 37, 19.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Wen, Y. Guo, R. Chen, X. Li, and Y. Qiao, 2020: The characteristics and possible growth mechanisms of the quasi-biweekly Pacific–Japan teleconnection in boreal summer. Climate Dyn., 55, 33633380, https://doi.org/10.1007/s00382-020-05448-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. V. Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 104 104 8
Full Text Views 111 111 19
PDF Downloads 153 153 21

Wave Trains of 10–30-Day Meridional Wind Variations over the North Pacific during Summer

View More View Less
  • 1 a State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 b College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The present study investigates the intraseasonal oscillations over the North Pacific during summer based on the ERA-Interim reanalysis dataset. It is shown that the main component of intraseasonal variations in meridional wind is dominated by 10–30-day variability. Zonally oriented wave trains are identified over the North Pacific at this band, with a zonal wavenumber 6. The wave trains exhibit an equivalent-barotropic structure, with the maximum amplitude in the upper troposphere, and are manifested as quasi-stationary Rossby waves with the energy dispersing eastward. The wave trains do not show a phase-locking feature; that is, they have no preferred geographical locations in the zonal direction. Furthermore, energy analyses suggest that the intraseasonal waves gain energy through baroclinic energy conversion, while the barotropic energy conversion plays a negligible role. The present results have implications for better understanding and forecasting weather and climate in North America, since the intraseasonal waves over the North Pacific may act as precursory signals for extreme events occurring over North America.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Riyu Lu, lr@mail.iap.ac.cn

Abstract

The present study investigates the intraseasonal oscillations over the North Pacific during summer based on the ERA-Interim reanalysis dataset. It is shown that the main component of intraseasonal variations in meridional wind is dominated by 10–30-day variability. Zonally oriented wave trains are identified over the North Pacific at this band, with a zonal wavenumber 6. The wave trains exhibit an equivalent-barotropic structure, with the maximum amplitude in the upper troposphere, and are manifested as quasi-stationary Rossby waves with the energy dispersing eastward. The wave trains do not show a phase-locking feature; that is, they have no preferred geographical locations in the zonal direction. Furthermore, energy analyses suggest that the intraseasonal waves gain energy through baroclinic energy conversion, while the barotropic energy conversion plays a negligible role. The present results have implications for better understanding and forecasting weather and climate in North America, since the intraseasonal waves over the North Pacific may act as precursory signals for extreme events occurring over North America.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Riyu Lu, lr@mail.iap.ac.cn
Save