• Abell, J. T., A. Pullen, Z. J. Lebo, P. Kapp, L. Gloege, A. R. Metcalf, J. Nie, and G. Winckler, 2020: A wind–albedo–wind feedback driven by landscape evolution. Nat. Commun., 11, 19, https://doi.org/10.1038/s41467-019-13661-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandersson, H., 1986: A homogeneity test to precipitation data. Int. J. Climatol., 6, 661675, https://doi.org/10.1002/joc.3370060607.

  • Allan, R. J., N. Nicholls, P. D. Jones, and I. J. Butterworth, 1991: A further extension of the Tahiti-Darwin SOI, early ENSO events, and Darwin pressure. J. Climate, 4, 743749, https://doi.org/10.1175/1520-0442(1991)004<0743:AFEOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., and Coauthors, 2014: Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J. Climate, 27, 36923712, https://doi.org/10.1175/JCLI-D-13-00652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., J. A. Guijarro, T. R. McVicar, S. M. Vicente-Serrano, D. Chen, S. Jerez, and F. Espírito-Santo, 2016: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J. Geophys. Res. Atmos., 121, 10591078, https://doi.org/10.1002/2015JD024485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., S. Rehman, J. A. Guijarro, T. R. McVicar, L. Minola, D. Chen, and S. M. Vicente-Serrano, 2018: Recent trends in wind speed across Saudi Arabia, 1978–2013: A break in the stilling. Int. J. Climatol., 38, e966e984, https://doi.org/10.1002/joc.5423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation pattern. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and J. E. Janowiak, 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681695, https://doi.org/10.1175/1520-0477(1995)076<0681:ACAWTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bichet, A., M. Wild, D. Folini, and C. Schär, 2012: Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys. Res. Lett., 39, L11701, https://doi.org/10.1029/2012GL051685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojariu, R., and G. Reverdin, 2002: Large-scale variability modes of freshwater flux and precipitation over the Atlantic. Climate Dyn., 18, 369381, https://doi.org/10.1007/s003820100182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climate impact. Quart. J. Roy. Meteor. Soc., 133, 21172134, https://doi.org/10.1002/qj.173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chappell, A., J. Baldock, and J. Sanderman, 2016: The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Climate Change, 6, 187191, https://doi.org/10.1038/nclimate2829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, M. G., and M. E. Alexander, 2019: The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands. Ann. For. Sci., 76, 44, https://doi.org/10.1007/s13595-019-0829-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., C. Azorin-Molina, L. Minola, G. Zhang, and D. Chen, 2021: Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J. Climate, 34, 22192234, https://doi.org/10.1175/JCLI-D-20-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, J. H. R., 2019: HadISD version 3: Monthly updates. Hadley Centre Tech. Note 103, 8 pp.

  • Dunn, J. H. R., M. K. Willett, E. D. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst., 5, 473491, https://doi.org/10.5194/gi-5-473-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Oceans, 104, 78417848, https://doi.org/10.1029/1998JC900109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, W., Y. Liu, A. Chappell, L. Dong, R. Xu, M. Ekström, T.-M. Fu, and Z. Zeng, 2021: Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. J. Climate, 60, 3350, https://doi.org/10.1175/JAMC-D-20-0037.1.

    • Search Google Scholar
    • Export Citation
  • Fang, G., and B. Huang, 2019: Seasonal predictability of the tropical Atlantic variability: Northern tropical Atlantic pattern. Climate Dyn., 52, 69096929, https://doi.org/10.1007/s00382-018-4556-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, https://doi.org/10.1016/j.gloplacha.2012.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, C. A., and Coauthors, 2019: The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst., 20, 37743781, https://doi.org/10.1029/2019GC008392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregow, H., and Coauthors, 2016: Worldwide survey of awareness and needs concerning reanalyses and respondents views on climate services. Bull. Amer. Meteor. Soc., 8, 14611473, https://doi.org/10.1175/BAMS-D-14-00271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guijarro, J. A., 2017: Daily series homogenization and gridding with Climatol v.3. Proc. Ninth Seminar for Homogenization and Quality Control in Climatological Databases and Fourth Conf. on Spatial Interpolation Techniques in Climatology and Meteorology, Budapest, Hungary, WMO, 175–180.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992039, https://doi.org/10.1002/qj.3803.

  • Huang, H. P., B. C. Hedquist, T. Lee, and S. W. Myint, 2014: Climate modeling for renewable energy applications. Adv. Meteor., 2014, 354862, https://doi.org/10.1155/2014/354862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kåberger, T., 2018: Progress of renewable electricity replacing fossil fuels. Global Energy Interconnect., 1, 4852, https://doi.org/10.14171/j.2096-5117.gei.2018.01.006.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriesche, P., and C. A. Schlosser, 2014: The association of the North Atlantic and the Arctic Oscillation on wind energy resource over Europe and its intermittency. Energy Procedia, 59, 270277, https://doi.org/10.1016/j.egypro.2014.10.377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., D. B. Enfield, and C. Wang, 2007: What drives the seasonal onset and decay of the Western Hemisphere warm pool? J. Climate, 20, 21332146, https://doi.org/10.1175/JCLI4113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Chen, Z. Li, and G. Fang, 2018: Recent recovery of surface wind speed in northwest China. Int. J. Climatol., 38, 44454458, https://doi.org/10.1002/joc.5679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., 2015: The East Atlantic/West Russia (EA/WR) teleconnection in the North Atlantic: Climate impact and relation to Rossby wave propagation. Climate Dyn., 44, 32113222, https://doi.org/10.1007/s00382-014-2381-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2020: High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain., 3, 564570, https://doi.org/10.1038/s41893-020-0521-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado-Cano, J., D. Barriopedro, R. García-Herrera, R. M. Trigo, and A. Hernández, 2019: Examining the North Atlantic Oscillation, east Atlantic pattern, and jet variability since 1685. J. Climate, 32, 62856298, https://doi.org/10.1175/JCLI-D-19-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minola, L., C. Azorin-Molina, and D. Chen, 2016: Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J. Climate, 29, 73977415, https://doi.org/10.1175/JCLI-D-15-0636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, https://doi.org/10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M., 2003: Estimating regression models with unknown breakpoints. Stat. Med., 22, 30553071, https://doi.org/10.1002/sim.1545.

  • Muggeo, V. M., 2008: segmented: An R package to fit regression models with broken-line relationships. R News, 8, 2025, https://cran.r-project.org/doc/Rnews/.

    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M., 2016: Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul., 86, 30593067, https://doi.org/10.1080/00949655.2016.1149855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M., 2017: Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat., 59, 311322, https://doi.org/10.1111/anzs.12200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., M. Hara, M. Oshika, and Y. Tachibana, 2015: Impact of the winter North Atlantic Oscillation (NAO) on the western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO. Part II: Multi-model evaluation of the NAO–ENSO linkage. Climate Dyn., 45, 35473562, https://doi.org/10.1007/s00382-015-2556-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., J. S. Kug, S. Il An, and T. Li, 2019: Role of the Western Hemisphere warm pool in climate variability over the western North Pacific. Climate Dyn., 53, 27432755, https://doi.org/10.1007/s00382-019-04652-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascoe, C., B. N. Lawrence, E. Guilyardi, M. Juckes, and K. E. Taylor, 2020: Documenting numerical experiments in support of the Coupled Model Intercomparison Project phase 6 (CMIP6). Geosci. Model Dev., 13, 21492167, https://doi.org/10.5194/gmd-13-2149-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res. Atmos., 114, D14105, https://doi.org/10.1029/2008JD011416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servain, J., L. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488, https://doi.org/10.1029/1999GL900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaner, M. R., S. J. Davis, N. S. Lewis, and K. Caldeira, 2018: Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ. Sci., 11, 914925, https://doi.org/10.1039/C7EE03029K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A. A., D. M. Kammen, and D. Callaway, 2016: Investigating the impact of wind-solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Appl. Energy, 168, 130145, https://doi.org/10.1016/j.apenergy.2016.01.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stawicki, S. A., and Coauthors, 2013: Wind disasters: A comprehensive review of current management strategies. Int. J. Crit. Illness Inj. Sci., 3, 130, https://doi.org/10.4103/2229-5151.114273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768772, https://doi.org/10.1038/nclimate2996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Q., G. Huang, K. Hu, and D. Niyogi, 2019: Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016. Energy, 167, 12241235, https://doi.org/10.1016/j.energy.2018.11.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., K. Muller, P. Coppin, R. Davy, C. Russell, and A. L. Hirsch, 2012: Long-term wind speed trends over Australia. J. Climate, 25, 170183, https://doi.org/10.1175/2011JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulazia, A., J. Sáenz, G. Ibarra-Berastegi, S. J. González-Rojí, and S. Carreno-Madinabeitia, 2019: Global estimations of wind energy potential considering seasonal air density changes. Energy, 187, 115938, https://doi.org/10.1016/j.energy.2019.115938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J. N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veers, P., and Coauthors, 2019: Grand challenges in the science of wind energy. Science, 366, 118, https://doi.org/10.1126/science.aau2027.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2001: The tropical Western Hemisphere warm pool. Geophys. Res. Lett., 28, 16351638, https://doi.org/10.1029/2000GL011763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2003: A further study of the tropical Western Hemisphere warm pool. J. Climate, 16, 14761493, https://doi.org/10.1175/1520-0442-16.10.1476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., D. B. Enfield, S. K. Lee, and C. W. Landsea, 2006: Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J. Climate, 19, 30113028, https://doi.org/10.1175/JCLI3770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. K. Lee, and D. B. Enfield, 2007: Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J. Climate, 20, 50215040, https://doi.org/10.1175/JCLI4304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012: Seasonality of the Pacific decadal oscillation. J. Climate, 25, 2538, https://doi.org/10.1175/2011JCLI4092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., A. Hodson, E. Isaksson, and O. Macdonald, 2000: Northern Hemisphere teleconnection indices and the mass balance of Svalbard glaciers. Int. J. Climatol., 20, 473487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C. C., and H. H. Yeh, 2010: Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity. Atmos. Res., 96, 496509, https://doi.org/10.1016/j.atmosres.2009.12.005.

    • Crossref
    • Search Google Scholar
  • Wohland, J., N. E. Omrani, D. Witthaut, and N. S. Keenlyside, 2019: Inconsistent wind speed trends in current twentieth century reanalyses. J. Geophys. Res., 124, 19311940, https://doi.org/10.1029/2018JD030083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, https://doi.org/10.1175/JCLI-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolway, R. I., C. J. Merchant, J. Van Den Hoek, C. Azorin-Molina, P. Nõges, A. Laas, E. B. Mackay, and I. D. Jones, 2019: Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett., 46, 1198311992, https://doi.org/10.1029/2019GL082752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., J. Zha, D. Zhao, and Q. Yang, 2018: Changes in terrestrial near-surface wind speed and their possible causes: An overview. Climate Dyn., 51, 20392078, https://doi.org/10.1007/s00382-017-3997-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, X. Bian, and W. E. Heilman, 2015: Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis. J. Climate, 28, 11661183, https://doi.org/10.1175/JCLI-D-14-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2018: Global terrestrial stilling: Does Earth’s greening play a role? Environ. Res. Lett., 13, 124013, https://doi.org/10.1088/1748-9326/aaea84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2020: Variability of daily maximum wind speed across China, 1975–2016: An examination of likely causes. J. Climate, 33, 27932816, https://doi.org/10.1175/JCLI-D-19-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and K. Wang, 2020: Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J. Climate, 33, 39894008, https://doi.org/10.1175/JCLI-D-19-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, Y. Dai, and H. Chen, 2013: Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Climate Dyn., 41, 307326, https://doi.org/10.1007/s00382-012-1485-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

All Time Past Year Past 30 Days
Abstract Views 1041 1038 47
Full Text Views 169 169 10
PDF Downloads 214 214 15

A Continuous Decline of Global Seasonal Wind Speed Range over Land since 1980

View More View Less
  • 1 aSchool of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • | 2 bCentro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE-CSIC), Moncada, Valencia, Spain
  • | 3 cSchool of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
  • | 4 dNational Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Science, Beijing, China
  • | 5 eFaculty of Fisheries and Aquatic Resources, Mae Jo University, Chiang Mai, Thailand
  • | 6 fDepartment of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
Restricted access

Abstract

To investigate changes in global wind speed phenomena, we constructed homogenized monthly time series (1980–2018) for 4722 meteorological stations. Through examining monthly averaged wind speeds (MWS), we found that seasonal wind speed range (SWSR; calculated as the difference between maximum and minimum MWS) has declined significantly by 10% since 1980 (p < 0.001). This global SWSR reduction was primarily influenced by decreases in Europe (−19%), South America (−16%), Australia (−14%), and Asia (−13%), with corresponding rate reductions of −0.13, −0.08, −0.09, and −0.06 m s−1 decade−1, respectively (p < 0.01). In contrast, the SWSR in North America rose 3%. Important is that the decrease in SWSR occurred regardless of the stilling or reversal of annual wind speed. The shrinking SWSR in Australia and South America was characterized by continuous decreases in maximum MWS and increases in the minimum. For Europe and Asia, maximum and minimum MWS declined initially after 1980, followed by substantial increases in minimum MWS (about 2000 and 2012, respectively) that preserved the long-term reduction in the range. Most reanalysis products (ERA5, ERA-Interim, and MERRA-2) and climate model simulations (AMIP6 and CMIP6) fail to reproduce the observed trends. However, some ocean–atmosphere indices (seasonality characteristics) were correlated significantly with these trends, including the Western Hemisphere warm pool, East Atlantic pattern, Pacific decadal oscillation, and others. These findings are important for increasing the understanding of mechanisms behind wind speed variations that influence a multitude of other biogeophysical processes and the development of efficient wind power generation, now and in the future.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenzhong Zeng, zzeng@sustech.edu.cn

Abstract

To investigate changes in global wind speed phenomena, we constructed homogenized monthly time series (1980–2018) for 4722 meteorological stations. Through examining monthly averaged wind speeds (MWS), we found that seasonal wind speed range (SWSR; calculated as the difference between maximum and minimum MWS) has declined significantly by 10% since 1980 (p < 0.001). This global SWSR reduction was primarily influenced by decreases in Europe (−19%), South America (−16%), Australia (−14%), and Asia (−13%), with corresponding rate reductions of −0.13, −0.08, −0.09, and −0.06 m s−1 decade−1, respectively (p < 0.01). In contrast, the SWSR in North America rose 3%. Important is that the decrease in SWSR occurred regardless of the stilling or reversal of annual wind speed. The shrinking SWSR in Australia and South America was characterized by continuous decreases in maximum MWS and increases in the minimum. For Europe and Asia, maximum and minimum MWS declined initially after 1980, followed by substantial increases in minimum MWS (about 2000 and 2012, respectively) that preserved the long-term reduction in the range. Most reanalysis products (ERA5, ERA-Interim, and MERRA-2) and climate model simulations (AMIP6 and CMIP6) fail to reproduce the observed trends. However, some ocean–atmosphere indices (seasonality characteristics) were correlated significantly with these trends, including the Western Hemisphere warm pool, East Atlantic pattern, Pacific decadal oscillation, and others. These findings are important for increasing the understanding of mechanisms behind wind speed variations that influence a multitude of other biogeophysical processes and the development of efficient wind power generation, now and in the future.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenzhong Zeng, zzeng@sustech.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 928.04 KB)
Save