• Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 15 June 2020, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Beadling, R. L., J. L. Russell, R. J. Stouffer, P. J. Goodman, and M. Mazloff, 2019: Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth system model simulations. J. Climate, 32, 59155940, https://doi.org/10.1175/JCLI-D-19-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J.-B. Sallée, Z. Wang, A. J. S. Meijers, N. Bruneau, A. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian and Pacific Ocean sectors of the Southern Hemisphere in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, https://doi.org/10.1002/jgrd.50153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, S. Godfrey, and S. Wijffels, 2010: Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Climate, 23, 197206, https://doi.org/10.1175/2009JCLI3081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and M. R. Mazloff, 2016: The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the southern ocean. J. Phys. Oceanogr., 46, 683710, https://doi.org/10.1175/JPO-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and A. J. S. Meijers, 2021: Strong quasi-stationary wintertime atmospheric surface pressure anomalies drive a dipole pattern in the Subantarctic Mode Water formation. J. Climate, 34, 69897004, https://doi.org/10.1175/JCLI-D-20-0593.1.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed Layer: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Manoa, 181–196.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., M. Holzer, and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542, 215218, https://doi.org/10.1038/nature21068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., 2011: Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett., 38, L11605, https://doi.org/10.1029/2011GL047668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., N. L. Bindoff, and S. R. Rintoul, 2009: Impacts of climate change on the subduction of mode and intermediate water masses in the Southern Ocean. J. Climate, 22, 32893302, https://doi.org/10.1175/2008JCLI2653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., N. L. Bindoff, and S. R. Rintoul, 2010: Changes in the subduction of Southern Ocean water masses at the end of the twenty-first century in eight IPCC models. J. Climate, 23, 65266541, https://doi.org/10.1175/2010JCLI3620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., P. J. Gleckler, F. W. Landerer, and K. E. Taylor, 2014: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, https://doi.org/10.1038/nclimate2389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., S. M. Griffies, D. Iudicone, R. Marsh, A. G. Nurser, and J. D. Zika, 2019: The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci., 11, 271305, https://doi.org/10.1146/annurev-marine-010318-095421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, Academic Press, 373–386.

    • Crossref
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Y. Du, T. Qu, Y. Zhang, and W. Cai, 2020: Variability of the Subantarctic Mode Water volume in the SIO during 2004–2018. Geophys. Res. Lett., 47, e2020GL087830, https://doi.org/10.1029/2020GL087830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., 2007: Grid point value of the monthly objective analysis using the Argo Data. JAMSTEC, accessed 15 June 2020, https://www.jamstec.go.jp/ARGO/argo_web/argo/?lang5en.

  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1991: The three-dimensional structure of wind-driven gyres: Ventilation and subduction. Rev. Geophys., 29, 590609, https://doi.org/10.1002/rog.1991.29.s2.590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyder, P., and Coauthors, 2018: Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat. Commun., 9, 3625, https://doi.org/10.1038/s41467-018-05634-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, https://doi.org/10.1175/2007JPO3464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. C., A. J. S. Meijers, E. Shuckburgh, J. B. Sallée, P. Haynes, E. K. McAufield, and M. R. Mazloff, 2016: How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics? J. Geophys. Res. Oceans, 121, 65586582, https://doi.org/10.1002/2016JC011680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32, 30203038, https://doi.org/10.1175/1520-0485(2002)032<3020:FOSHTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., W. Llovel, and E. Portela, 2019: Interannual variability of upper ocean water masses as inferred from Argo array. J. Geophys. Res. Oceans, 124, 60676085, https://doi.org/10.1029/2018JC014866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Locarnini, R. A., and Coauthors, 2018: Temperature. Vol. 1, World Ocean Atlas 2018, A. Mishonov, Ed., NOAA Atlas NESDIS 81, 52 pp.

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Export Citation
  • Marshall, J. C., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 13151329, https://doi.org/10.1175/1520-0485(1993)023<1315:ITSRAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. Angel, Ed., Pergamon, 103–119.

  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40, 64.

  • Meijers, A. J. S., 2014: The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. Roy. Soc., A372, 20130296, https://doi.org/10.1098/rsta.2013.0296.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., E. Shuckburgh, N. Bruneau, J.-B. Sallee, T. J. Bracegirdle, and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res., 117, C12008, https://doi.org/10.1029/2012JC008412.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., I. Cerovečki, B. A. King, and V. Tamsitt, 2019: A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett., 46, 13 15213 160, https://doi.org/10.1029/2019GL085280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., S. M. Griffies, M. Winton, W. Anderson, and J. Sarmiento, 2016: Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Climate, 29, 20592075, https://doi.org/10.1175/JCLI-D-15-0579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela, E., N. Kolodziejczyk, C. Maes, and V. Thierry, 2020: Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr., 50, 361381, https://doi.org/10.1175/JPO-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 23742390, https://doi.org/10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and R. A. Fine, 2020: Variability of the sub-Antarctic Mode Water subduction rate during the Argo period. Geophys. Res. Lett., 47, e2020GL088248, https://doi.org/10.1029/2020GL088248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and the spatial structure of ocean warming since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sallée, J. B., 2018: Southern Ocean warming. Oceanography, 31, 5262, https://doi.org/10.5670/oceanog.2018.215.

  • Sallée, J. B., N. Wienders, K. G. Speer, and R. Morrow, 2006: Formation of Subantarctic Mode Water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, https://doi.org/10.1007/s10236-005-0054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, and Z. Wang, 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18451862, https://doi.org/10.1002/jgrc.20157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013b: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, https://doi.org/10.1002/jgrc.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 479, 556, https://doi.org/10.1038/nature10605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., S. Xie, and L. D. Talley, 2018: Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate, 31, 74597479, https://doi.org/10.1175/JCLI-D-18-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., L. D. Talley, S. Xie, W. Liu, and S. T. Gille, 2020: Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Climate, 33, 10 00310 020, https://doi.org/10.1175/JCLI-D-19-0877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., A. K. DuVivier, D. B. Whitt, M. C. Long, I. Grooms, and W. G. Large, 2021: On the control of subantarctic stratification by the ocean circulation. Climate Dyn., 56, 299327, https://doi.org/10.1007/s00382-020-05473-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., I. Cerovečki, S. A. Josey, S. T. Gille, and E. Schulz, 2020: Mooring observations of air–sea heat fluxes in two Subantarctic Mode Water formation regions. J. Climate, 33, 27572777, https://doi.org/10.1175/JCLI-D-19-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S. K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, X., and Coauthors, 2021: Fast and slow responses of the Subantarctic Mode Water in the south Indian Ocean to global warming in CMIP5 extended RCP4.5 simulations. Climate Dyn., 56, 31573171, https://doi.org/10.1007/s00382-021-05635-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., Y. Ding, and S. P. Xie, 2021: Buoyancy and wind driven changes in Subantarctic Mode Water during 2004–2019. Geophys. Res. Lett., 48, e2021GL092511, https://doi.org/10.1029/2021GL092511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, T. Qu, Y. Hong, C. M. Domingues, and M. Feng, 2021: Changes in the Subantarctic Mode Water properties and spiciness in the southern Indian Ocean based on Argo observations. J. Phys. Oceanogr., 51, 22032221, https://doi.org/10.1175/JPO-D-20-0254.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2018: Salinity. Vol. 2, World Ocean Atlas 2018, A. Mishonov, Ed., NOAA Atlas NESDIS 82, 50 pp.

All Time Past Year Past 30 Days
Abstract Views 270 270 34
Full Text Views 159 159 29
PDF Downloads 183 183 38

Subantarctic Mode Water and Its Long-Term Change in CMIP6 Models

View More View Less
  • 1 a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology and Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
  • | 2 b Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
  • | 3 c College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
  • | 4 d Frontier Science Center for Deep Ocean Multispheres and Earth System, Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
  • | 5 e Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 6 f Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Subantarctic Mode Water (SAMW) is a major water mass in the southern Indian and Pacific Oceans and plays an important role in the ocean uptake and anthropogenic heat and carbon. The characteristics, formation, and long-term evolution of the SAMW are investigated in the “historical” and “SSP245” scenario simulations of phase 6 of the Coupled Model Intercomparison Project (CMIP6). Defined by low potential vorticity, the simulated SAMW is consistently thinner, shallower, lighter, and warmer than in observations because of biases in the winter mixed layer properties and spatial distribution. The biases are especially large in the South Pacific Ocean. The winter mixed layer bias can be attributed to unrealistic heat loss and stratification in the models. Nevertheless, the SAMW is presented better in CMIP6 than in CMIP5 with regard to its volume, location, and physical characteristics. In warmer climate, the simulated SAMW in the southern Indian Ocean consistently becomes lighter in density, with a reduced volume and a southward shift in the subduction region. The reduced heat loss, instead of the increased Ekman pumping induced by the poleward-intensified westerly wind, dominates in the SAMW change. The winter mixed layer shoals in the northern outcrop region, and the SAMW subduction shifts southward where the mixed layer remains deep. The projected reduction of the SAMW volume is likely to impact the heat and freshwater redistribution in the Southern Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

The Subantarctic Mode Water (SAMW) is a major water mass in the southern Indian and Pacific Oceans and plays an important role in the ocean uptake and anthropogenic heat and carbon. The characteristics, formation, and long-term evolution of the SAMW are investigated in the “historical” and “SSP245” scenario simulations of phase 6 of the Coupled Model Intercomparison Project (CMIP6). Defined by low potential vorticity, the simulated SAMW is consistently thinner, shallower, lighter, and warmer than in observations because of biases in the winter mixed layer properties and spatial distribution. The biases are especially large in the South Pacific Ocean. The winter mixed layer bias can be attributed to unrealistic heat loss and stratification in the models. Nevertheless, the SAMW is presented better in CMIP6 than in CMIP5 with regard to its volume, location, and physical characteristics. In warmer climate, the simulated SAMW in the southern Indian Ocean consistently becomes lighter in density, with a reduced volume and a southward shift in the subduction region. The reduced heat loss, instead of the increased Ekman pumping induced by the poleward-intensified westerly wind, dominates in the SAMW change. The winter mixed layer shoals in the northern outcrop region, and the SAMW subduction shifts southward where the mixed layer remains deep. The projected reduction of the SAMW volume is likely to impact the heat and freshwater redistribution in the Southern Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.79 MB)
Save