• Ainsworth, E. A., and S. P. Long, 2005: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165, 351372, https://doi.org/10.1111/j.1469-8137.2004.01224.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, E. A., and A. Rogers, 2007: The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ., 30, 258270, https://doi.org/10.1111/j.1365-3040.2007.01641.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 507 pp.

  • Chadwick, R., H. Douville, and C. B. Skinner, 2017: Timeslice experiments for understanding regional climate projections: Applications to the tropical hydrological cycle and European winter circulation. Climate Dyn., 49, 30113029, https://doi.org/10.1007/s00382-016-3488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating the influences of land warming, the direct CO2 effect, the plant physiological effect, and SST warming on regional precipitation changes. J. Geophys. Res. Atmos., 124, 624640, https://doi.org/10.1029/2018JD029423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., J.-S. Hsieh, and S. M. Hagos, 2004: The Africa–South America intercontinental teleconnection. J. Climate, 17, 28512865, https://doi.org/10.1175/1520-0442(2004)017<2851:TAAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett., 40, 30313035, https://doi.org/10.1002/grl.50563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., F. H. Lambert, and G. K. Vallis, 2018: Regime change behavior during Asian Monsoon onset. J. Climate, 31, 33273348, https://doi.org/10.1175/JCLI-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., F. H. Lambert, and G. K. Vallis, 2019: Processes and timescales in onset and withdrawal of “aquaplanet monsoons.” J. Atmos. Sci., 76, 23572373, https://doi.org/10.1175/JAS-D-18-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2019: Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophys. Res. Lett., 46, 22712281, https://doi.org/10.1029/2018GL081226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Climate Change, 8, 434440, https://doi.org/10.1038/s41558-018-0144-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., and A. L. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., G. B. Bonan, and A. L. S. Swann, 2019: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system. J. Climate, 32, 57255744, https://doi.org/10.1175/JCLI-D-18-0812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., M. Pietschnig, S. Ragen, T. A. Smith, and D. S. Battisti, 2021: Terrestrial evaporation and global climate: Lessons from Northland, a planet with a hemispheric continent. J. Climate, 34, 22532276, https://doi.org/10.1175/JCLI-D-20-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., M. S. Pritchard, G. J. Kooperman, and J. T. Randerson, 2019: Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? Earth’s Future, 7, 450468, https://doi.org/10.1029/2018EF001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., M. Collins, P. Maher, S. I. Thomson, and G. K. Vallis, 2021: SimCloud version 1.0: A simple diagnostic cloud scheme for idealized climate models. Geosci. Model Dev., 14, 28012826, https://doi.org/10.5194/gmd-14-2801-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., F. Lo, Y. Zheng, L. Harrison, C. Funk, D. Lombardozzi, and C. Goodale, 2016: Projections of leaf area index in Earth system models. Earth Syst. Dyn., 7, 211229, https://doi.org/10.5194/esd-7-211-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. Mon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., 1994: Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 21432156, https://doi.org/10.1029/94WR00586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, 127, https://doi.org/10.1002/qj.49710745102.

  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, https://doi.org/10.1175/2010JCLI3505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., and F. H. Lambert, 2018: A simple tool for refining GCM water availability projections, applied to Chinese catchments. Hydrol. Earth Syst. Sci., 22, 60436057, https://doi.org/10.5194/hess-22-6043-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193, 120145, https://doi.org/10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Pietschnig, M., 2020: Understanding changes in tropical precipitation due to climate change. Ph.D. thesis, University of Exeter, 171 pp., http://hdl.handle.net/10871/123634.

  • Pietschnig, M., F. H. Lambert, M. Saint-Lu, and G. K. Vallis, 2019: The presence of Africa and limited soil moisture contribute to future drying of South America. Geophys. Res. Lett., 46, 12 44512 453, https://doi.org/10.1029/2019GL084441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Lu, M., R. Chadwick, F. H. Lambert, and M. Collins, 2019: Surface warming and atmospheric circulation dominate rainfall changes over tropical rainforests under global warming. Geophys. Res. Lett., 46, 13 41013 419, https://doi.org/10.1029/2019GL085295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, https://doi.org/10.1126/science.271.5254.1402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and D. R. Durran, 2014: Estimating the response of extreme precipitation over midlatitude mountains to global warming. J. Climate, 28, 42464262, https://doi.org/10.1175/JCLI-D-14-00750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., C. J. Poulsen, R. Chadwick, N. S. Diffenbaugh, and R. P. Fiorella, 2017: The role of plant CO2 physiological forcing in shaping future daily-scale precipitation. J. Climate, 30, 23192340, https://doi.org/10.1175/JCLI-D-16-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., C. J. Poulsen, and J. S. Mankin, 2018: Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun., 9, 1094, https://doi.org/10.1038/s41467-018-03472-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282–285, https://doi.org/10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., 2018: Plants and drought in a changing climate. Curr. Climate Change Rep., 4, 192201, https://doi.org/10.1007/s40641-018-0097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. I., and G. K. Vallis, 2019: Hierarchical modeling of solar system planets with Isca. Atmosphere, 10, 803, https://doi.org/10.3390/atmos10120803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Randow, C., and Coauthors, 2004: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol., 78, 526, https://doi.org/10.1007/s00704-004-0041-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., and T. Schneider, 2015: Stationary eddies and the zonal asymmetry of net precipitation and ocean freshwater forcing. J. Climate, 28, 51155133, https://doi.org/10.1175/JCLI-D-14-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, S. Chakraborty, N. E. Clinton, C. Risi, Y. Sun, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern amazon. Proc. Natl. Acad. Sci. USA, 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarakas, C. M., A. L. S. Swann, M. M. Laguë, K. C. Armour, and J. T. Randerson, 2020: Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth system models. J. Climate, 33, 85618578, https://doi.org/10.1175/JCLI-D-20-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., K. Hickel, W. R. Dawes, F. H. S. Chiew, A. W. Western, and P. R. Briggs, 2004: A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res., 40, W02502, https://doi.org/10.1029/2003WR002710.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 273 273 30
Full Text Views 144 144 14
PDF Downloads 177 177 14

Response of Tropical Rainfall to Reduced Evapotranspiration Depends on Continental Extent

View More View Less
  • 1 a Department of Mathematics, University of Exeter, Exeter, United Kingdom
  • | 2 b Department of Biology, University of Washington, Seattle, Washington
  • | 3 c Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Future projections of precipitation change over tropical land are often enhanced by vegetation responses to CO2 forcing in Earth system models. Projected decreases in rainfall over the Amazon basin and increases over the Maritime Continent are both stronger when plant physiological changes are modeled than if these changes are neglected, but the reasons for this amplification remain unclear. The responses of vegetation to increasing CO2 levels are complex and uncertain, including possible decreases in stomatal conductance and increases in leaf area index due to CO2 fertilization. Our results from an idealized atmospheric general circulation model show that the amplification of rainfall changes occurs even when we use a simplified vegetation parameterization based solely on CO2-driven decreases in stomatal conductance, indicating that this mechanism plays a key role in complex model projections. Based on simulations with rectangular continents we find that reducing terrestrial evaporation to zero with increasing CO2 notably leads to enhanced rainfall over a narrow island. Strong heating and ascent over the island trigger moisture advection from the surrounding ocean. In contrast, over larger continents rainfall depends on continental evaporation. Simulations with two rectangular continents representing South America and Africa reveal that the stronger decrease in rainfall over the Amazon basin seen in Earth system models is due to a combination of local and remote effects, which are fundamentally connected to South America’s size and its location with respect to Africa. The response of tropical rainfall to changes in evapotranspiration is thus connected to size and configuration of the continents.

M. Pietschnig’s current affiliation: Department of Geosciences, University of Oslo, Oslo, Norway.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Pietschnig, marianne.pietschnig@geo.uio.no

Abstract

Future projections of precipitation change over tropical land are often enhanced by vegetation responses to CO2 forcing in Earth system models. Projected decreases in rainfall over the Amazon basin and increases over the Maritime Continent are both stronger when plant physiological changes are modeled than if these changes are neglected, but the reasons for this amplification remain unclear. The responses of vegetation to increasing CO2 levels are complex and uncertain, including possible decreases in stomatal conductance and increases in leaf area index due to CO2 fertilization. Our results from an idealized atmospheric general circulation model show that the amplification of rainfall changes occurs even when we use a simplified vegetation parameterization based solely on CO2-driven decreases in stomatal conductance, indicating that this mechanism plays a key role in complex model projections. Based on simulations with rectangular continents we find that reducing terrestrial evaporation to zero with increasing CO2 notably leads to enhanced rainfall over a narrow island. Strong heating and ascent over the island trigger moisture advection from the surrounding ocean. In contrast, over larger continents rainfall depends on continental evaporation. Simulations with two rectangular continents representing South America and Africa reveal that the stronger decrease in rainfall over the Amazon basin seen in Earth system models is due to a combination of local and remote effects, which are fundamentally connected to South America’s size and its location with respect to Africa. The response of tropical rainfall to changes in evapotranspiration is thus connected to size and configuration of the continents.

M. Pietschnig’s current affiliation: Department of Geosciences, University of Oslo, Oslo, Norway.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Pietschnig, marianne.pietschnig@geo.uio.no

Supplementary Materials

    • Supplemental Materials (PDF 6.36 MB)
Save