• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttes, N., J. M. Gregory, T. Kuhlbrodt, and T. Suzuki, 2012: The effect of windstress change on future sea level change in the Southern Ocean. Geophys. Res. Lett., 39, L23602, https://doi.org/10.1029/2012GL054207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20, 681693, https://doi.org/10.1175/JCLI4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, S. Godfrey, and S. Wijffels, 2010: Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Climate, 23, 197206, https://doi.org/10.1175/2009JCLI3081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chambers, D. P., M. A. Merrifield, and R. S. Nerem, 2012: Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett., 39, L18607, https://doi.org/10.1029/2012GL052885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2016: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., 97, 923933, https://doi.org/10.1175/BAMS-D-15-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dangendorf, S., C. Hay, F. M. Calafat, M. Marcos, C. G. Piecuch, K. Berk, and J. Jensen, 2019: Persistent acceleration in global sea-level rise since the 1960s. Nat. Climate Change, 9, 705710, https://doi.org/10.1038/s41558-019-0531-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, J., Y. Li, L. Zhang, and F. Wang, 2020: Impacts of the Indian Ocean dipole on sea level and gyre circulation of the western tropical Pacific Ocean. J. Climate, 33, 42074228, https://doi.org/10.1175/JCLI-D-19-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvat, V. K. E., 2019: A global assessment of atoll island planform changes over the past decades. Wiley Interdiscip. Rev. Climate Change, 10, e557, https://doi.org/10.1002/wcc.557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, https://doi.org/10.1002/jgrd.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., P. Spence, A. M. Hogg, M. H. England, and S. M. Griffies, 2013: Sea level changes forced by Southern Ocean winds. Geophys. Res. Lett., 40, 57105715, https://doi.org/10.1002/2013GL058104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., and Coauthors, 2020: The causes of sea-level rise since 1900. Nature, 584, 393397, https://doi.org/10.1038/s41586-020-2591-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., and Coauthors, 2021: Constraining 20th-century sea-level rise in the South Atlantic Ocean. J. Geophys. Res. Oceans, 126, e2020JC016970, https://doi.org/10.1029/2020JC016970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1998: Antarctic oscillation: Concept and applications. Chinese Sci. Bull., 43, 734738, https://doi.org/10.1007/BF02898949.

  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauer, M. E., E. Fussell, V. Mueller, M. Burkett, M. Call, K. Abel, R. McLeman, and D. Wrathall, 2020: Sea-level rise and human migration. Nat. Rev. Earth Environ., 1, 2839, https://doi.org/10.1038/s43017-019-0002-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, C. C., E. Morrow, R. E. Kopp, and J. X. Mitrovica, 2015: Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481484, https://doi.org/10.1038/nature14093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., A. Grinsted, and J. C. Moore, 2014: Upper limit for sea level projections by 2100. Environ. Res. Lett., 9, 104008, https://doi.org/10.1088/1748-9326/9/10/104008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jyoti, J., P. Swapna, R. Krishnan, and C. V. Naidu, 2019: Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st century. Climate Dyn., 53, 44134432, https://doi.org/10.1007/s00382-019-04795-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, https://doi.org/10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and J. Ploshay, 2021: Sea level pressure trends: Model-based assessment of detection, attribution, and consistency with CMIP5 historical simulations. J. Climate, 34, 327346, https://doi.org/10.1175/JCLI-D-19-0997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2020: Evaluating the GECCO3 1948–2018 ocean synthesis—A configuration for initializing the MPI-ESM climate model. Quart. J. Roy. Meteor. Soc., 146, 22502273, https://doi.org/10.1002/qj.3790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., B. Hamlington, S. Cheon, W. Han, and P. Thompson, 2020: 20th century multivariate Indian Ocean regional sea level reconstruction. J. Geophys. Res. Oceans, 125, e2020JC016270, https://doi.org/10.1029/2020JC016270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, https://doi.org/10.1029/2007GL032419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World Ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, M., A. L. Gordon, J. Wei, L. K. Gruenburg, and G. Jiang, 2018: Multi-decadal timeseries of the Indonesian Throughflow. Dyn. Atmos. Oceans, 81, 8495, https://doi.org/10.1016/j.dynatmoce.2018.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, A. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2020: Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37, 10671080, https://doi.org/10.1007/s00376-020-0057-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., and Coauthors, 2020: LICOM model datasets for the CMIP6 Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37, 239249, https://doi.org/10.1007/s00376-019-9208-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and L. Terray, 2016: Observed southern upper-ocean warming over 2005–2014 and associated mechanisms. Environ. Res. Lett., 11, 124023, https://doi.org/10.1088/1748-9326/11/12/124023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., I. Fukumori, and B. Meyssignac, 2013: Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010. Global Planet. Change, 101, 113118, https://doi.org/10.1016/j.gloplacha.2012.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., X. Zhang, J. A. Church, and Q. Wu, 2020: Processes responsible for the Southern Hemisphere ocean heat uptake and redistribution under anthropogenic warming. J. Climate, 33, 37873807, https://doi.org/10.1175/JCLI-D-19-0478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., 2011: A shift in western tropical Pacific sea level trends during the 1990s. J. Climate, 24, 41264138, https://doi.org/10.1175/2011JCLI3932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., M. Becker, W. Llovel, and A. Cazenave, 2012: An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv. Geophys., 33, 945972, https://doi.org/10.1007/s10712-011-9171-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milne, G. A., W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea, 2009: Identifying the causes of sea-level change. Nat. Geosci., 2, 471478, https://doi.org/10.1038/ngeo544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03809, https://doi.org/10.1029/2004GL021765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2021: Interannual variability in sea surface height at southern midlatitudes of the Indian Ocean. J. Phys. Oceanogr., 51, 15951609, https://doi.org/10.1175/JPO-D-20-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neely, R. R., D. R. Marsh, K. L. Smith, S. M. Davis, and L. M. Polvani, 2014: Biases in Southern Hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys. Res. Lett., 41, 86028610, https://doi.org/10.1002/2014GL061627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppenheimer, M., and Coauthors, 2019: Sea level rise and implications for low lying islands, coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 321–445.

  • Pierce, D. W., P. J. Gleckler, T. P. Barnett, B. D. Santer, and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, https://doi.org/10.1029/2012GL053389..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, https://doi.org/10.1029/2011GL046712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 17511762, https://doi.org/10.1175/JPO2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2012: Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42, 193206, https://doi.org/10.1175/JPO-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, L. Wu, and S. Kida, 2015: Wind- versus eddy-forced regional sea level trends and variability in the North Pacific Ocean. J. Climate, 28, 15611577, https://doi.org/10.1175/JCLI-D-14-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., I. Fukumori, and R. A. Fine, 2019: Spin-up of the Southern Hemisphere super gyre. J. Geophys. Res. Oceans, 124, 154170, https://doi.org/10.1029/2018JC014391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, P. Sutton, and N. Zilberman, 2016: Multidecadal change of the South Pacific gyre circulation. J. Phys. Oceanogr., 46, 18711883, https://doi.org/10.1175/JPO-D-15-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Schwarzkopf, F. U., and C. W. Böning, 2011: Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett., 38, L12602, https://doi.org/10.1029/2011GL047651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., B. Meyssignac, T. Penduff, L. Terray, B. Barnier, and J.-M. Molines, 2016: Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability. Geophys. Res. Lett., 43, 81518159, https://doi.org/10.1002/2016GL069273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A. B. A., F. Adloff, S. Jevrejeva, P. W. Leclercq, B. Marzeion, Y. Wada, and R. Winkelmann, 2017: A review of recent updates of sea-level projections at global and regional scales. Surv. Geophys., 38, 385406, https://doi.org/10.1007/s10712-016-9374-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and A. Révelard, 2014: The Indonesian Throughflow response to Indo-Pacific climate variability. J. Geophys. Res. Oceans, 119, 11611175, https://doi.org/10.1002/2013JC009533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, A. Koch-Larrouy, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels, 2014: The Indonesian seas and their role in the coupled ocean–climate system. Nat. Geosci., 7, 487492, https://doi.org/10.1038/ngeo2188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and S. Hüttemann, 2008: Response of regional sea level to atmospheric pressure loading in a climate change scenario. J. Climate, 21, 20932101, https://doi.org/10.1175/2007JCLI1803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, D. S., and Coauthors, 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 30633085, https://doi.org/10.5194/acp-13-3063-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., and Y. T. Song, 2015: Indonesian Throughflow proxy from satellite altimeters and gravimeters. J. Geophys. Res. Oceans, 120, 28442855, https://doi.org/10.1002/2014JC010382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., and M. A. Merrifield, 2014: A unique asymmetry in the pattern of recent sea level change. Geophys. Res. Lett., 41, 76757683, https://doi.org/10.1002/2014GL061263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2013: Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res. Oceans, 118, 381398, https://doi.org/10.1029/2012JC008317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1979: Interannual variability of the 500 mb zonal mean flow in the Southern Hemisphere. Mon. Wea. Rev., 107, 15151524, https://doi.org/10.1175/1520-0493(1979)107<1515:IVOTMZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vianna, M. L., and V. V. Menezes, 2013: Bidecadal sea level modes in the North and South Atlantic Oceans. Geophys. Res. Lett., 40, 59265931, https://doi.org/10.1002/2013GL058162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, F. W. Landerer, and R. Lumpkin, 2017: Decade-long deep-ocean warming detected in the subtropical South Pacific. Geophys. Res. Lett., 44, 927936, https://doi.org/10.1002/2016GL071661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the south Indian Ocean heat content and sea level in 2014–2018. Sci. Adv., 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., L. Oman, P. A. Newman, R. S. Stolarski, S. Pawson, J. E. Nielsen, and J. Perlwitz, 2009: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys. Res. Lett., 36, L18701, https://doi.org/10.1029/2009GL040419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, F., H. Wang, and J. He, 2003: Interannual variability of Mascarene high and Australian high and their influences on summer rainfall over East Asia. Chinese Sci. Bull., 48, 492497, https://doi.org/10.1007/BF03183258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., R. Murtugudde, L. Zhou, and P. Liang, 2020: A potential link between the Southern Ocean warming and the south Indian Ocean heat balance. J. Geophys. Res. Oceans, 125, e2020JC016132, https://doi.org/10.1029/2020JC016132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., 2012: Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett., 39, L17709, https://doi.org/10.1029/2012GL052947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Feng, Y. Du, H. E. Phillips, N. L. Bindoff, and M. J. McPhaden, 2018: Strengthened Indonesian Throughflow drives decadal warming in the southern Indian Ocean. Geophys. Res. Lett., 45, 61676175, https://doi.org/10.1029/2018GL078265.

    • Search Google Scholar
    • Export Citation
  • Zhuang, W., M. Feng, Y. Du, A. Schiller, and D. Wang, 2013: Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J. Geophys. Res. Oceans, 118, 13021315, https://doi.org/10.1002/jgrc.20129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 329 329 49
Full Text Views 98 98 15
PDF Downloads 128 128 23

Rapid Sea Level Rise in the Southern Hemisphere Subtropical Oceans

View More View Less
  • 1 a CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • | 2 b Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 c Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 4 d Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
  • | 5 e LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The subtropical oceans between 35° and 20°S in the Southern Hemisphere (SH) have exhibited prevailingly rapid sea level rise (SLR) rates since the mid-twentieth century, amplifying damages of coastal hazards and exerting increasing threats to South America, Africa, and Australia. Yet, mechanisms of the observed SLR have not been firmly established, and its representation in climate models has not been examined. By analyzing observational sea level estimates, ocean reanalysis products, and ocean model hindcasts, we show that the steric SLR of the SH subtropical oceans between 35° and 20°S is faster than the global mean rate by 18.2% ± 9.9% during 1958–2014. However, present climate models—the fundamental bases for future climate projections—generally fail to reproduce this feature. Further analysis suggests that the rapid SLR in the SH subtropical oceans is primarily attributable to the persistent upward trend of the southern annular mode (SAM). Physically, this trend in SAM leads to the strengthening of the SH subtropical highs, with the strongest signatures observed in the southern Indian Ocean. These changes in atmospheric circulation promote regional SLR in the SH subtropics by driving upper-ocean convergence. Climate models show systematic biases in the simulated structure and trend magnitude of SAM and significantly underestimate the enhancement of subtropical highs. These biases lead to the inability of models to correctly simulate the observed subtropical SLR. This work highlights the paramount necessity of reducing model biases to provide reliable regional sea level projections.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

The subtropical oceans between 35° and 20°S in the Southern Hemisphere (SH) have exhibited prevailingly rapid sea level rise (SLR) rates since the mid-twentieth century, amplifying damages of coastal hazards and exerting increasing threats to South America, Africa, and Australia. Yet, mechanisms of the observed SLR have not been firmly established, and its representation in climate models has not been examined. By analyzing observational sea level estimates, ocean reanalysis products, and ocean model hindcasts, we show that the steric SLR of the SH subtropical oceans between 35° and 20°S is faster than the global mean rate by 18.2% ± 9.9% during 1958–2014. However, present climate models—the fundamental bases for future climate projections—generally fail to reproduce this feature. Further analysis suggests that the rapid SLR in the SH subtropical oceans is primarily attributable to the persistent upward trend of the southern annular mode (SAM). Physically, this trend in SAM leads to the strengthening of the SH subtropical highs, with the strongest signatures observed in the southern Indian Ocean. These changes in atmospheric circulation promote regional SLR in the SH subtropics by driving upper-ocean convergence. Climate models show systematic biases in the simulated structure and trend magnitude of SAM and significantly underestimate the enhancement of subtropical highs. These biases lead to the inability of models to correctly simulate the observed subtropical SLR. This work highlights the paramount necessity of reducing model biases to provide reliable regional sea level projections.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn
Save