• Ali, H., and V. Mishra, 2017: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep., 7, 1228, https://doi.org/10.1038/s41598-017-01306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., H. J. Fowler, and V. Mishra, 2018: Global observational evidence of strong linkage between dew point temperature and precipitation extremes. Geophys. Res. Lett., 45, 12 32012 330, https://doi.org/10.1029/2018GL080557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., H. J. Fowler, G. Lenderink, E. Lewis, and D. Pritchard, 2021: Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett., 48, e2020GL090317, https://doi.org/10.1029/2020GL090317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nat. Climate Change, 7, 128132, https://doi.org/10.1038/nclimate3201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., S. Westra, G. Lenderink, and H. J. Fowler, 2018: Temperature-extreme precipitation scaling: A two-way causality? Int. J. Climatol., 38, e1274e1279, https://doi.org/10.1002/joc.5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., and J. O. Haerter, 2013: Unexpected increase in precipitation intensity with temperature—A result of mixing of precipitation types? Atmos. Res., 119, 5661, https://doi.org/10.1016/j.atmosres.2011.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., J. O. Haerter, P. Thejll, C. Piani, S. Hagemann, and J. H. Christensen, 2009: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res., 114, D18102, https://doi.org/10.1029/2009JD012008.

    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, A., F. Johnson, and C. Wasko, 2019: The relationship of atmospheric air temperature and dew point temperature to extreme rainfall. Environ. Res. Lett., 14, 074025, https://doi.org/10.1088/1748-9326/ab2a26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., B. Alonzo, S. Bastin, N. D. Silva, and C. Muller, 2016: Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J. Geophys. Res. Atmos., 121, 31003119, https://doi.org/10.1002/2015JD023497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., C. Wasko, and A. F. Prein, 2021a: Intensification of short-duration rainfall extremes and implications for flood risk: Current state of the art and future directions. Philos. Trans. Roy. Soc., 379A, 20190541, https://doi.org/10.1098/rsta.2019.0541.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Coauthors, 2021b: Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, 107122, https://doi.org/10.1038/s43017-020-00128-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaál, L., P. Molnar, and J. Szolgay, 2014: Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18, 15611573, https://doi.org/10.5194/hess-18-1561-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golroudbary, V. R., Y. Zeng, C. M. Mannaerts, and Z. Su, 2019: Response of extreme precipitation to urbanization over the Netherlands. J. Appl. Meteor. Climatol., 58, 645661, https://doi.org/10.1175/JAMC-D-18-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., P. Berg, and S. Hagemann, 2010: Heavy rain intensity distributions on varying time scales and at different temperatures. J. Geophys. Res., 115, D17102, https://doi.org/10.1029/2009JD013384.

    • Search Google Scholar
    • Export Citation
  • Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, https://doi.org/10.1029/2010GL045081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., S. Eghdamirad, A. Sharma, and J. H. Kim, 2020: Quantification of uncertainty in projections of extreme daily precipitation. Earth Space Sci., 7, e2019EA001052, https://doi.org/10.1029/2019EA001052.

    • Crossref
    • Export Citation
  • Koenker, R., 2018: quantreg: Quantile regression, version 5.75. R Package, https://www.r-project.org.

  • Koenker, R., and G. Bassett, 1978: Regression quantiles. Econometrica, 46, 3350, https://doi.org/10.2307/1913643.

  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and J. Attema, 2015: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett., 10, 085001, https://doi.org/10.1088/1748-9326/10/8/085001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh, 2011: Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci., 15, 30333041, https://doi.org/10.5194/hess-15-3033-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., R. Barbero, S. Westra, and H. J. Fowler, 2018: Reply to comments on “Temperature-extreme precipitation scaling: A two-way causality?” Int. J. Climatol., 38, 46644666, https://doi.org/10.1002/joc.5799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., H. de Vries, H. J. Fowler, R. Barbero, B. van Ulft, and E. van Meijgaard, 2021: Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philos. Trans. Roy. Soc., 379A, 20190544, https://doi.org/10.1098/rsta.2019.0544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loriaux, J. M., G. Lenderink, S. R. De Roode, and A. P. Siebesma, 2013: Understanding convective extreme precipitation scaling using observations and an entraining plume model. J. Atmos. Sci., 70, 36413655, https://doi.org/10.1175/JAS-D-12-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maeda, E. E., N. Utsumi, and T. Oki, 2012: Decreasing precipitation extremes at higher temperatures in tropical regions. Nat. Hazards, 64, 935941, https://doi.org/10.1007/s11069-012-0222-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346351, https://doi.org/10.1038/ngeo2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando, 2015: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci., 19, 17531766, https://doi.org/10.5194/hess-19-1753-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthou, G., A. Mailhot, E. Laurence, and G. Talbot, 2014: Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. J. Hydrometeor., 15, 19992011, https://doi.org/10.1175/JHM-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, I.-H., and S.-K. Min, 2017: Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Climate, 30, 95279537, https://doi.org/10.1175/JCLI-D-17-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. Mcmahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., F. Marra, S. Fatichi, P. Molnar, E. Morin, A. Sharma, and P. Burlando, 2018: Intensification of convective rain cells at warmer temperatures observed from high-resolution weather radar data. J. Hydrometeor., 19, 715726, https://doi.org/10.1175/JHM-D-17-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pui, A., A. Lal, and A. Sharma, 2011: How does the Interdecadal Pacific Oscillation affect design floods in Australia? Water Resour. Res., 47, W05554, https://doi.org/10.1029/2010WR009420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pui, A., A. Sharma, A. Santoso, and S. Westra, 2012: Impact of the El Niño–Southern Oscillation, Indian Ocean dipole, and southern annular mode on daily to subdaily rainfall characteristics in east Australia. Mon. Wea. Rev., 140, 16651682, https://doi.org/10.1175/MWR-D-11-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, T. P., C. Wasko, and A. Sharma, 2020: An improved covariate for projecting future rainfall extremes? Water Resour. Res., 56, e2019WR026924, https://doi.org/10.1029/2019WR026924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., 2018: How intermittency affects the rate at which rainfall extremes respond to changes in temperature. Earth Syst. Dyn., 9, 955968, https://doi.org/10.5194/esd-9-955-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeer, K., and G. Kirchengast, 2017: Sensitivity of extreme precipitation to temperature: The variability of scaling factors from a regional to local perspective. Climate Dyn., 50, 39813994, https://doi.org/10.1007/s00382-017-3857-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, https://doi.org/10.1073/pnas.0903186107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., F. Zwiers, X. Zhang, and G. Li, 2020: A comparison of intra-annual and long-term trend scaling of extreme precipitation with temperature in a large-ensemble regional climate simulation. J. Climate, 33, 92339245, https://doi.org/10.1175/JCLI-D-19-0920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, https://doi.org/10.1029/2011GL048426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and C. Wasko, 2021: Humans, climate and streamflow. Nat. Climate Change, 11, 725726, https://doi.org/10.1038/s41558-021-01137-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visser, J. B., C. Wasko, A. Sharma, and R. Nathan, 2020: Resolving inconsistencies in extreme precipitation-temperature sensitivities. Geophys. Res. Lett., 47, e2020GL089723, https://doi.org/10.1029/2020GL089723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, and G. Michael, 2017: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Climate Change, 7, 268274, https://doi.org/10.1038/nclimate3239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2014: Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res., 50, 36083614, https://doi.org/10.1002/2013WR015194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2015: Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 527529, https://doi.org/10.1038/ngeo2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and R. Nathan, 2019: The local dependency of precipitation on historical changes in temperature. Climatic Change, 156, 105120, https://doi.org/10.1007/s10584-019-02523-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., A. Sharma, and F. Johnson, 2015: Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett., 42, 87838790, https://doi.org/10.1002/2015GL066274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., R. M. Parinussa, and A. Sharma, 2016: A quasi-global assessment of changes in remotely sensed rainfall extremes with temperature. Geophys. Res. Lett., 43, 12 65912 668, https://doi.org/10.1002/2016GL071354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., W. T. Lu, and R. Mehrotra, 2018: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environ. Res. Lett., 13, 074031, https://doi.org/10.1088/1748-9326/aad135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, C., P. Wu, L. Zhang, and L. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep., 6, 38506, https://doi.org/10.1038/srep38506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., S. Guo, P. Gentine, S. C. Sullivan, L. Gu, S. He, J. Chen, and P. Liu, 2021: Does the hook structure constrain future flood intensification under anthropogenic climate warming? Water Resour. Res., 57, e2020WR028491, https://doi.org/10.1029/2020WR028491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, and M. Wehner, 2019: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures. Climatic Change, 154, 257271, https://doi.org/10.1007/s10584-019-02415-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. Li, H. Wan, and A. J. Cannon, 2017: Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci., 10, 255259, https://doi.org/10.1038/ngeo2911.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 215 215 28
Full Text Views 67 67 13
PDF Downloads 87 87 18

Eliminating the “Hook” in Precipitation–Temperature Scaling

View More View Less
  • 1 a School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 b Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observational studies of extreme daily and subdaily precipitation–temperature sensitivities (apparent scaling) aim to provide evidence and improved understanding of how extreme precipitation will respond to a warming climate. However, interpretation of apparent scaling results is hindered by large variations in derived scaling rates and divergence from theoretical and modeled projections of systematic increases in extreme precipitation intensities (climate scaling). In warmer climatic regions, rainfall intensity has been reported to increase with temperature to a maximum before decreasing, creating a second-order discontinuity or “hook”-like structure. Here we investigate spatial and temporal discrepancies in apparent scaling results by isolating rainfall events and conditioning event precipitation on duration. We find that previously reported negative apparent scaling at higher temperatures that creates the hook structure is the result of a decrease in the duration of the precipitation event, and not a decrease in the precipitation rate. We introduce standardized pooling using long records of Australian station data across climate zones to show average precipitation intensities and 1-h peak precipitation intensities increase with temperature across all event durations and locations investigated. For shorter-duration events (<6 h), average precipitation intensity scaling is in line with the expected Clausius–Clapeyron (CC) relation at ~7% °C−1, and this decreases with increasing duration, down to 2% °C−1 at 24-h duration. Consistent with climate scaling derived from model projections, 1-h peak precipitation intensities are found to increase with temperature at elevated rates compared to average precipitation intensities, with super-CC scaling (10%–14% °C−1) found for short-duration events in tropical climates.

Significance Statement

Deviating from theoretical and modeled projections of systematic increases in extreme precipitation intensities (climate scaling), decreasing rainfall intensities are commonly reported at higher temperatures in observational studies of extreme precipitation–temperature sensitivity (apparent scaling). Here we attribute this second-order discontinuity, or “hook” structure, to a decrease in the duration of precipitation events at higher temperatures, and not to a decrease in precipitation intensities. By incorporating precipitation duration into event-based apparent scaling analyses, we show improved spatial and temporal consistency of apparent scaling results. We find average precipitation intensities increase with temperature across all event durations and locations investigated, while 1-h peak intensities are increasing at elevated rates. Our results suggest increased precipitation intensities in a future warmer climate.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashish Sharma, a.sharma@unsw.edu.au

Abstract

Observational studies of extreme daily and subdaily precipitation–temperature sensitivities (apparent scaling) aim to provide evidence and improved understanding of how extreme precipitation will respond to a warming climate. However, interpretation of apparent scaling results is hindered by large variations in derived scaling rates and divergence from theoretical and modeled projections of systematic increases in extreme precipitation intensities (climate scaling). In warmer climatic regions, rainfall intensity has been reported to increase with temperature to a maximum before decreasing, creating a second-order discontinuity or “hook”-like structure. Here we investigate spatial and temporal discrepancies in apparent scaling results by isolating rainfall events and conditioning event precipitation on duration. We find that previously reported negative apparent scaling at higher temperatures that creates the hook structure is the result of a decrease in the duration of the precipitation event, and not a decrease in the precipitation rate. We introduce standardized pooling using long records of Australian station data across climate zones to show average precipitation intensities and 1-h peak precipitation intensities increase with temperature across all event durations and locations investigated. For shorter-duration events (<6 h), average precipitation intensity scaling is in line with the expected Clausius–Clapeyron (CC) relation at ~7% °C−1, and this decreases with increasing duration, down to 2% °C−1 at 24-h duration. Consistent with climate scaling derived from model projections, 1-h peak precipitation intensities are found to increase with temperature at elevated rates compared to average precipitation intensities, with super-CC scaling (10%–14% °C−1) found for short-duration events in tropical climates.

Significance Statement

Deviating from theoretical and modeled projections of systematic increases in extreme precipitation intensities (climate scaling), decreasing rainfall intensities are commonly reported at higher temperatures in observational studies of extreme precipitation–temperature sensitivity (apparent scaling). Here we attribute this second-order discontinuity, or “hook” structure, to a decrease in the duration of precipitation events at higher temperatures, and not to a decrease in precipitation intensities. By incorporating precipitation duration into event-based apparent scaling analyses, we show improved spatial and temporal consistency of apparent scaling results. We find average precipitation intensities increase with temperature across all event durations and locations investigated, while 1-h peak intensities are increasing at elevated rates. Our results suggest increased precipitation intensities in a future warmer climate.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashish Sharma, a.sharma@unsw.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 440.53 KB)
Save