• Albers, J. R., and M. Newman, 2021: Subseasonal predictability of the North Atlantic Oscillation. Environ. Res. Lett., 16, 044024, https://doi.org/10.1088/1748-9326/abe781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5, 944958, https://doi.org/10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific meridional mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 2000: Tropospheric temperature variations adjusted for El Niño, 1958–1998. J. Geophys. Res., 105, 11 84111 849, https://doi.org/10.1029/2000JD900044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., É. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., M. Newman, M. A. Alexander, and J. D. Scott, 2008: The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical west Pacific. J. Climate, 21, 61016118, https://doi.org/10.1175/2008JCLI1612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, https://doi.org/10.1002/jgrc.20335.

  • Capotondi, A., and P. D. Sardeshmukh, 2017: Is El Niño really changing? Geophys. Res. Lett., 44, 85488556, https://doi.org/10.1002/2017GL074515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, E. Di Lorenzo, A. Subramanian, and A. J. Miller, 2019: Predictability of US West Coast ocean temperatures is not solely due to ENSO. Sci. Rep., 9, 10993, https://doi.org/10.1038/s41598-019-47400-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. T. Wittenberg, J. S. Kug, K. Takahashi, and M. J. McPhaden, 2020a: ENSO diversity. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys Union, 65–86.

    • Crossref
    • Export Citation
  • Capotondi, A., C. Deser, A. Phillips, Y. Okumura, and S. Larson, 2020b: ENSO and Pacific decadal variability in the Community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Search Google Scholar
    • Export Citation
  • Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 51635174, https://doi.org/10.1175/2009JCLI2848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784, https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2016: Orthogonal PDO and ENSO indices. J. Climate, 29, 38833892, https://doi.org/10.1175/JCLI-D-15-0684.1.

  • Chen, X., and T. Zhou, 2018: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., 51, 44034419, https://doi.org/10.1007/s00382-017-3871-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., S. B. Power, A. Sullivan, and F. Delage, 2019: The role of the South Pacific in modulating tropical Pacific variability. Sci. Rep., 9, 18311, https://doi.org/10.1038/s41598-019-52805-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1994: On ENSO coastal currents and sea levels. J. Phys. Oceanogr., 24, 661680, https://doi.org/10.1175/1520-0485(1994)024<0661:OECCAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, https://doi.org/10.1007/s00382-008-0448-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon, 2018: How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J. Climate, 31, 49915014, https://doi.org/10.1175/JCLI-D-17-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, https://doi.org/10.1038/ngeo984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y. O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, https://doi.org/10.1175/2010JCLI3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y. O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate, 30, 98719895, https://doi.org/10.1175/JCLI-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067, https://doi.org/10.1175/2010JCLI3584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., D. J. Vimont, and M. Newman, 2020: The critical role of non-normality in partitioning tropical and extratropical contributions to PNA growth. J. Climate, 33, 62736295, https://doi.org/10.1175/JCLI-D-19-0555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joh, Y., and E. Di Lorenzo, 2019: Interactions between Kuroshio Extension and central tropical Pacific lead to preferred decadal-timescale oscillations in Pacific climate. Sci. Rep., 9, 13558, https://doi.org/10.1038/s41598-019-49927-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B. T., M. Ting, and R. Seager, 2021: Assessing ENSO summer teleconnections, impacts, and predictability in North America. J. Climate, 34, 36293643, https://doi.org/10.1175/JCLI-D-20-0761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19, 43604377, https://doi.org/10.1175/JCLI3846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, P. M., and P. D. Jones, 1996: Removal of the El Niño–Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res., 101, 19 01319 022, https://doi.org/10.1029/96JD01173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn ., 46, 23372351, https://doi.org/10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2019: Separating the North and South Pacific meridional modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett., 46, 906915, https://doi.org/10.1029/2018GL080320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and E. Di Lorenzo, 2018: Mechanisms and predictability of Pacific decadal variability. Curr. Climate Change Rep., 4, 128144, https://doi.org/10.1007/s40641-018-0090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Wu, R. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett., 29, 1404, https://doi.org/10.1029/2001GL013735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, https://doi.org/10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 14051446, https://doi.org/10.1002/qj.49712253409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, https://doi.org/10.1175/JCLI4165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977, https://doi.org/10.1175/2008JCLI2659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841, https://doi.org/10.1007/s00382-011-1034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A. S. Unnikrishnan, and C. Cassou, 2017: Influence of ENSO on the Pacific decadal oscillation in CMIP models. Climate Dyn., 49, 33093326, https://doi.org/10.1007/s00382-016-3514-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niranjan Kumar, K., T. B. M. J. Ouarda, S. Sandeep, and R. S. Ajayamohan, 2016: Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Climate Dyn., 47, 24432454, https://doi.org/10.1007/s00382-016-2973-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrick, L., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., C. M. Selman, S. Larson, J. C. Furtado, and E. J. Becker, 2020: The impact of the extratropics on ENSO diversity and predictability. Climate Dyn., 54, 44694484, https://doi.org/10.1007/s00382-020-05232-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 2019: The Nyquist issue in linear inverse modeling. Mon. Wea. Rev., 147, 13411349, https://doi.org/10.1175/MWR-D-18-0104.1.

  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7, 13521372, https://doi.org/10.1175/1520-0442(1994)007<1352:ABCFSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19, 57965815, https://doi.org/10.1175/JCLI3951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, https://doi.org/10.1175/2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 10861103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, https://doi.org/10.1007/s00382-014-2135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 03328 059, https://doi.org/10.1029/2000JD000189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, https://doi.org/10.1175/JCLI3527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., and M. Newman, 2021: Seasonal Predictability of global and North American coastal sea surface temperature and height anomalies. Geophys. Res. Lett., 48, e2020GL091886, https://doi.org/10.1029/2020GL091886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141156, https://doi.org/10.1175/2010BAMS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, https://doi.org/10.1038/nature06982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141, https://doi.org/10.1175/2009JCLI3089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092, https://doi.org/10.1175/JCLI3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vyushin, D., and P. J. Kushner, 2009: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22, 28902904, https://doi.org/10.1175/2008JCLI2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012: Influence of ENSO on Pacific decadal variability: An analysis based on the NCEP Climate Forecast System. J. Climate, 25, 61366151, https://doi.org/10.1175/JCLI-D-11-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, 2018: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett., 45, 24872496, https://doi.org/10.1002/2017GL076327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Wang and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 15371542, https://doi.org/10.1002/2015GL063450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, D. L., B. Gan, L. Wu, and A. J. Miller, 2018: The North Pacific Gyre Oscillation and mechanisms of its decadal variability in CMIP5 models. J. Climate, 31, 24872509, https://doi.org/10.1175/JCLI-D-17-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., and N. Zeng, 2010: An Atlantic influence on Amazon rainfall. Climate Dyn., 34, 249264, https://doi.org/10.1007/s00382-009-0551-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 74387446, https://doi.org/10.1002/2017GL073475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879883, https://doi.org/10.1038/36081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Xie, Y. Kosaka, and J. Yang, 2018: Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. J. Climate, 31, 82658279, https://doi.org/10.1175/JCLI-D-18-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., J.-S. Kug, J.-H. Park, and S.-I. An, 2020: Diversity of North Pacific meridional mode and its distinct impacts on El Niño–Southern Oscillation. Geophys. Res. Lett., 47, e2020GL088993, https://doi.org/10.1029/2020GL088993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and E. Di Lorenzo, 2020: The impacts of extra-tropical ENSO precursors on tropical Pacific decadal-scale variability. Sci. Rep., 10, 3031, https://doi.org/10.1038/s41598-020-59253-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., E. Di Lorenzo, D. Sun, and S. Stevenson, 2021: Tropical Pacific decadal variability and ENSO precursor in CMIP5 models. J. Climate, 34, 10231045, https://doi.org/10.1175/JCLI-D-20-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 217 217 35
Full Text Views 194 194 31
PDF Downloads 229 229 39

Removing the Effects of Tropical Dynamics from North Pacific Climate Variability

View More View Less
  • 1 a Program in Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
  • | 2 b Pilot National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 c Climate Diagnostics Center, CIRES, University of Colorado at Boulder, Boulder, Colorado
  • | 4 d Physical Sciences Laboratory, NOAA, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Teleconnections from the tropics energize variations of the North Pacific climate, but detailed diagnosis of this relationship has proven difficult. Simple univariate methods, such as regression on El Niño–Southern Oscillation (ENSO) indices, may be inadequate since the key dynamical processes involved—including ENSO diversity in the tropics, re-emergence of mixed layer thermal anomalies, and oceanic Rossby wave propagation in the North Pacific—have a variety of overlapping spatial and temporal scales. Here we use a multivariate linear inverse model to quantify tropical and extratropical multiscale dynamical contributions to North Pacific variability, in both observations and CMIP6 models. In observations, we find that the tropics are responsible for almost half of the seasonal variance, and almost three-quarters of the decadal variance, along the North American coast and within the Subtropical Front region northwest of Hawaii. SST anomalies that are generated by local dynamics within the northeast Pacific have much shorter time scales, consistent with transient weather forcing by Aleutian low anomalies. Variability within the Kuroshio–Oyashio Extension (KOE) region is considerably less impacted by the tropics, on all time scales. Consequently, without tropical forcing the dominant pattern of North Pacific variability would be a KOE pattern, rather than the Pacific decadal oscillation (PDO). In contrast to observations, most CMIP6 historical simulations produce North Pacific variability that maximizes in the KOE region, with amplitude significantly higher than observed. Correspondingly, the simulated North Pacific in all CMIP6 models is shown to be relatively insensitive to the tropics, with a dominant spatial pattern generally resembling the KOE pattern, not the PDO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Zhao, yzhao468@gatech.edu

Abstract

Teleconnections from the tropics energize variations of the North Pacific climate, but detailed diagnosis of this relationship has proven difficult. Simple univariate methods, such as regression on El Niño–Southern Oscillation (ENSO) indices, may be inadequate since the key dynamical processes involved—including ENSO diversity in the tropics, re-emergence of mixed layer thermal anomalies, and oceanic Rossby wave propagation in the North Pacific—have a variety of overlapping spatial and temporal scales. Here we use a multivariate linear inverse model to quantify tropical and extratropical multiscale dynamical contributions to North Pacific variability, in both observations and CMIP6 models. In observations, we find that the tropics are responsible for almost half of the seasonal variance, and almost three-quarters of the decadal variance, along the North American coast and within the Subtropical Front region northwest of Hawaii. SST anomalies that are generated by local dynamics within the northeast Pacific have much shorter time scales, consistent with transient weather forcing by Aleutian low anomalies. Variability within the Kuroshio–Oyashio Extension (KOE) region is considerably less impacted by the tropics, on all time scales. Consequently, without tropical forcing the dominant pattern of North Pacific variability would be a KOE pattern, rather than the Pacific decadal oscillation (PDO). In contrast to observations, most CMIP6 historical simulations produce North Pacific variability that maximizes in the KOE region, with amplitude significantly higher than observed. Correspondingly, the simulated North Pacific in all CMIP6 models is shown to be relatively insensitive to the tropics, with a dominant spatial pattern generally resembling the KOE pattern, not the PDO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Zhao, yzhao468@gatech.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.86 MB)
Save