• Bailey, A., H. K. A. Singh, and J. Nusbaumer, 2019: Evaluating a moist isentropic framework for poleward moisture transport: Implications for water isotopes over Antarctica. Geophys. Res. Lett., 46, 78197827, https://doi.org/10.1029/2019GL082965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and K. Fraedrich, 1989: Topographic effects on the mean tropospheric flow patterns around Antarctica. J. Atmos. Sci., 46, 34013415, https://doi.org/10.1175/1520-0469(1989)046<3401:TEOTMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bals-Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 41914215, https://doi.org/10.1175/1520-0442(2001)014<4191:TWSHSJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., M. Oppenheimer, R. E. Kopp, W. P. Aspinall, and R. M. Cooke, 2019: Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA, 116, 11 19511 200, https://doi.org/10.1073/pnas.1817205116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2 : Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606, Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Brady, E., and Coauthors, 2019: The connected isotopic water cycle in the Community Earth System Model version 1. J. Adv. Model. Earth Syst., 11, 25472566, https://doi.org/10.1029/2019MS001663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breil, M., E. Christner, A. Cauquoin, M. Werner, M. Karremann, and G. Schädler, 2021: Applying an isotope-enabled regional climate model over the Greenland ice sheet: Effect of spatial resolution on model bias. Climate Past, 17, 16851699, https://doi.org/10.5194/CP-17-1685-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casado, M., T. Münch, and T. Laepple, 2020: Climatic information archived in ice cores: Impact of intermittency and diffusion on the recorded isotopic signal in Antarctica. Climate Past, 16, 15811598, https://doi.org/10.5194/cp-16-1581-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993.

  • DeConto, R. M., and Coauthors, 2021: The Paris climate agreement and future sea-level rise from Antarctica. Nature, 593, 8389, https://doi.org/10.1038/s41586-021-03427-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, T. L., and Coauthors, 2021: Projected land ice contributions to twenty-first-century sea level rise. Nature, 593, 7482, https://doi.org/10.1038/s41586-021-03302-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, D. A., N. Reeh, and H. B. Clausen, 1985: Stratigraphic noise in time series derived from ice cores. Ann. Glaciol., 7, 7683, https://doi.org/10.3189/S0260305500005942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, https://doi.org/10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frieler, K., and Coauthors, 2015: Consistent evidence of increasing Antarctic accumulation with warming. Nat. Climate Change, 5, 348352, https://doi.org/10.1038/nclimate2574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., S. Kaspari, and P. A. Mayewski, 2005: Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA-40 reanalyses, 1958–2000. Climate Dyn., 24, 759770, https://doi.org/10.1007/s00382-005-0019-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, P. B., C. O. Dufour, J. Yin, S. M. Griffies, and M. Winton, 2017: CO2-induced ocean warming of the Antarctic continental shelf in an eddying global climate model. J. Geophys. Res. Oceans, 122, 80798101, https://doi.org/10.1002/2017JC012849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, S., and D. Noone, 2008: Variability in the teleconnection between the El Niño–Southern Oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J. Geophys. Res., 113, D17110, https://doi.org/10.1029/2007JD009107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, https://doi.org/10.1175/JCLI-D-12-00813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, https://doi.org/10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, E. J. Steig, G. H. Gudmundsson, J. Smith, and K. J. Heywood, 2016: Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea. Oceanography, 29, 106117, https://doi.org/10.5670/oceanog.2016.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, https://doi.org/10.1029/2009JD012657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. R., K. M. Cuffey, J. W. C. White, E. J. Steig, C. Buizert, B. R. Markle, J. R. McConnell, and M. Sigl, 2017a: Water isotope diffusion in the WAIS divide ice core during the Holocene and last glacial. J. Geophys. Res. Earth Surf., 122, 290309, https://doi.org/10.1002/2016JF003938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. R., J. W. C. White, E. J. Steig, B. H. Vaughn, V. Morris, V. Gkinis, B. R. Markle, and S. W. Schoenemann, 2017b: Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores. Atmos. Meas. Tech., 10, 617632, https://doi.org/10.5194/amt-10-617-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1, 11771198, https://doi.org/10.1175/1520-0442(1988)001<1177:IVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., and G. A. Schmidt, 2006: Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., M. Vizcaino, J. Fyke, L. van Kampenhout, and M. R. van den Broeke, 2016: Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Climate Dyn., 47, 13671381, https://doi.org/10.1007/s00382-015-2907-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, https://doi.org/10.1175/JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2017: Recent enhancement of Central Pacific El Niño variability relative to last eight centuries. Nat. Commun., 8, 15386, https://doi.org/10.1038/ncomms15386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., and D. W. J. Thompson, 2016: The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos., 121, 32763289, https://doi.org/10.1002/2015JD024665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münch, T., and T. Laepple, 2018: What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores? Climate Past, 14, 20532070, https://doi.org/10.5194/cp-14-2053-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, https://doi.org/10.1175/2010JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., 2008: The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation. J. Geophys. Res., 113, D04102, https://doi.org/10.1029/2007JD008892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 1998: Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation. Ann. Glaciol., 27, 398402, https://doi.org/10.3189/1998AoG27-1-398-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 2002: Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J. Geophys. Res., 107, 4742, https://doi.org/10.1029/2002JD002262.

    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 2004: Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res., 109, D07105, https://doi.org/10.1029/2003JD004228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nusbaumer, J., T. E. Wong, C. Bardeen, and D. Noone, 2017: Evaluating hydrological processes in the Community Atmosphere Model version 5 (CAM5) using stable isotope ratios of water. J. Adv. Model. Earth Syst., 9, 949977, https://doi.org/10.1002/2016MS000839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., D. Swingedouw, V. Masson-Delmotte, C. Risi, B. Vinther, P. Yiou, R. Vautard, and K. Yoshimura, 2014: Characterizing atmospheric circulation signals in Greenland ice cores: Insights from a weather regime approach. Climate Dyn., 43, 25852605, https://doi.org/10.1007/s00382-014-2074-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., L. Padman, H. A. Fricker, S. Adusumilli, S. Howard, and M. R. Siegfried, 2018: Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci., 11, 121126, https://doi.org/10.1038/s41561-017-0033-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020365.

  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and S. S. Jacobs, 2002: Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296, 20202023, https://doi.org/10.1126/science.1070942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., E. J. D. Campos, and R. Haarsma, 2015: The impact of ENSO on the South Atlantic subtropical dipole mode. J. Climate, 28, 26912705, https://doi.org/10.1175/JCLI-D-14-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., Y. Okumura, and C. Deser, 2012: Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 25, 40484066, https://doi.org/10.1175/JCLI-D-11-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2018: Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219222, https://doi.org/10.1038/s41586-018-0179-y.

    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, A. Donohoe, J. Nusbaumer, and D. C. Noone, 2016: A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle due to CO2 doubling. J. Climate, 29, 67656782, https://doi.org/10.1175/JCLI-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B., and Coauthors, 2020: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 12391242, https://doi.org/10.1126/science.aaz5845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steig, E. J., P. M. Grootes, and M. Stuiver, 1994: Seasonal precipitation timing and ice core records. Science, 266, 18851886, https://doi.org/10.1126/science.266.5192.1885.

    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., E. J. Steig, S. G. Dee, G. H. Roe, and G. J. Hakim, 2017: Climate reconstruction using data assimilation of water isotope ratios from ice cores. J. Geophys. Res., 122, 15451568, https://doi.org/10.1002/2016JD026011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., and A. H. Lynch, 2013: Atmospheric meridional moisture flux over the Southern Ocean: A story of the Amundsen Sea. J. Climate, 26, 80558064, https://doi.org/10.1175/JCLI-D-12-00381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–southern oscillation and Antarctica. Int. J. Climatol., 24 (1), 131, https://doi.org/10.1002/joc.965.

  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic Sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinther, B. M., P. D. Jones, K. R. Briffa, H. B. Clausen, K. K. Andersen, D. Dahl-Jensen, and S. J. Johnsen, 2010: Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev., 29, 522538, https://doi.org/10.1016/j.quascirev.2009.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. G. Fyke, J. T. M. Lenaerts, J. M. Nusbaumer, H. Singh, D. Noone, P. J. Rasch, and R. Zhang, 2020: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 14, 429444, https://doi.org/10.5194/tc-14-429-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, L. N., S. Lee, and S. W. Son, 2007: Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci., 64, 548563, https://doi.org/10.1175/JAS3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiu, Y. Y. S., and A. C. Maycock, 2019: On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J. Climate, 32, 48294845, https://doi.org/10.1175/JCLI-D-18-0813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., Z. Zhang, M. Zhou, S. Zhong, D. Lenschow, H. Hsu, H. Wu, and B. Sun, 2012: Influence of the Antarctic oscillation, the Pacific–South American modes and the El Niño–Southern Oscillation on the Antarctic surface temperature and pressure variations. Antarct. Sci., 24, 5976, https://doi.org/10.1017/S095410201100054X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., J. Sjolte, F. Adolphi, B. Møllesøe Vinther, H. C. Steen-Larsen, T. J. Popp, and R. Muscheler, 2018: Climate information preserved in seasonal water isotope at NEEM: Relationships with temperature, circulation and sea ice. Climate Past, 14, 10671078, https://doi.org/10.5194/cp-14-1067-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 230 12
Full Text Views 67 45 3
PDF Downloads 76 50 3

Utilizing Ice Core and Climate Model Data to Understand Seasonal West Antarctic Variability

Paul B. GoddardaDepartment of Geosciences, University of Connecticut, Storrs, Connecticut
bDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana

Search for other papers by Paul B. Goddard in
Current site
Google Scholar
PubMed
Close
,
Clay R. TaboraDepartment of Geosciences, University of Connecticut, Storrs, Connecticut

Search for other papers by Clay R. Tabor in
Current site
Google Scholar
PubMed
Close
, and
Tyler R. JonescInstitute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado

Search for other papers by Tyler R. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reconstructions of past West Antarctic Ice Sheet (WAIS) climate rely on the isotopologues of water recorded in ice cores that extend the local surface temperature record back tens of thousands of years. Here, we utilize continuous flow sampling and novel back-diffusion techniques with the WAIS Divide ice core (WDCobs) to construct a seasonal record of the δ18O value of the precipitation (δ18Op) at the time of deposition from 1980 to 2000. We then use a water isotope enabled global climate model, iCESM1, to establish seasonal drivers of WAIS climate and of δ18Op variability at the WAIS Divide location to compare with the WDCobs and MERRA-2 data. Our results show that the WAIS seasonal climate variability is driven by the position and strength of the Amundsen Sea low (ASL) caused by variations in the southern annual mode and the two Pacific–South American patterns (PSA1 and PSA2). The largest year-to-year seasonal δ18Op anomalies at the WAIS Divide location occur with respect to PSA2 during austral winter (JJA) as a result of an eastward displacement of the ASL that shifts the associated onshore winds toward the Weddell Sea, reducing temperatures and precipitation near the WAIS Divide location. Additionally, the iCESM1 experiment suggests that changes to the moisture path from the source to the WAIS Divide location are an important driver of seasonal WDCobs δ18Op variability. This work highlights the potential of using a single ice core to reconstruct past WAIS climate at seasonal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Goddard, pgoddard@iu.edu

Abstract

Reconstructions of past West Antarctic Ice Sheet (WAIS) climate rely on the isotopologues of water recorded in ice cores that extend the local surface temperature record back tens of thousands of years. Here, we utilize continuous flow sampling and novel back-diffusion techniques with the WAIS Divide ice core (WDCobs) to construct a seasonal record of the δ18O value of the precipitation (δ18Op) at the time of deposition from 1980 to 2000. We then use a water isotope enabled global climate model, iCESM1, to establish seasonal drivers of WAIS climate and of δ18Op variability at the WAIS Divide location to compare with the WDCobs and MERRA-2 data. Our results show that the WAIS seasonal climate variability is driven by the position and strength of the Amundsen Sea low (ASL) caused by variations in the southern annual mode and the two Pacific–South American patterns (PSA1 and PSA2). The largest year-to-year seasonal δ18Op anomalies at the WAIS Divide location occur with respect to PSA2 during austral winter (JJA) as a result of an eastward displacement of the ASL that shifts the associated onshore winds toward the Weddell Sea, reducing temperatures and precipitation near the WAIS Divide location. Additionally, the iCESM1 experiment suggests that changes to the moisture path from the source to the WAIS Divide location are an important driver of seasonal WDCobs δ18Op variability. This work highlights the potential of using a single ice core to reconstruct past WAIS climate at seasonal time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Goddard, pgoddard@iu.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.07 MB)
Save