• Chang, C.-P., and K.-M. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitude during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946, https://doi.org/10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., P. A. Harr, and H. J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., H. Lin, and Z. Wu, 2011: Another look at influences of the Madden–Julian Oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, https://doi.org/10.1029/2010JD014787.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-S., and C.-H. Sui, 2018: A diagnostic study of the evolution of the MJO maintained by wave dynamics, moistening, and convective-radiative processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., H.-J. Lin, and H.-H. Hsu, 2014: Madden–Julian oscillation and the winter rainfall in Taiwan. J. Climate, 27, 45214530, https://doi.org/10.1175/JCLI-D-13-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden–Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, https://doi.org/10.1029/2004JD005408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, https://doi.org/10.1175/2007JCLI1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., L. Chen, F. Ren, and C. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521533, https://doi.org/10.1007/s00376-010-9118-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and B. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., G.-H. Lim, and K.-Y. Kim, 2006: A new look at the midlatitude–MJO teleconnection in the Northern Hemisphere winter. Quart. J. Roy. Meteor. Soc., 132, 485503, https://doi.org/10.1256/qj.04.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., and NOAA CDR Program, 2011: NOAA Climate Data Record (CDR) of Daily Outgoing Longwave Radiation (OLR), version 1.2. NOAA National Climatic Data Center, accessed 24 March 2019, https://doi.org/10.7289/V5SJ1HH2.

    • Crossref
    • Export Citation
  • Li, T., J. Ling, and P.-C. Hsu, 2020: Madden–Julian Oscillation: Its discovery, dynamics, and impact on East Asia. J. Meteor. Res., 34, 2042, https://doi.org/10.1007/s13351-020-9153-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., P.-C. Hsu, J. He, Z. Zhu, and W. Zhang, 2016: Extended-range forecast of spring rainfall in southern China based on the Madden–Julian Oscillation. Meteor. Atmos. Phys., 128, 331345, https://doi.org/10.1007/s00703-015-0418-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, H., and C.-P. Chang, 1986: Generation of internal- and exernal-mode motions from internal heating: Effects of vertical shear and damping. J. Atmos. Sci., 43, 948957, https://doi.org/10.1175/1520-0469(1986)043<0948:GOIAEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P.-C. Hsu, 2019: Long-term changes in wintertime persistent heavy rainfall over southern China contributed by the Madden–Julian Oscillation. Atmos. Oceanic Sci. Lett., 12, 361368, https://doi.org/10.1080/16742834.2019.1639471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian Oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO–PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: On the generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., H.-T. Lee, and K. R. Knapp, 2018: HIRS outgoing longwave radiation—daily climate data record: Application toward identifying tropical subseasonal variability. Remote Sens., 10, 1325, https://doi.org/10.3390/rs10091325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and H.-J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., C.-H. Sui, and T. Li, 2015: Moistening processes for Madden–Julian oscillations during DYNAMO/CINDY. J. Climate, 28, 30413058, https://doi.org/10.1175/JCLI-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. D. Maloney, and E. A. Barnes, 2018: Explaining the consistency of MJO teleconnection patterns with linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. D. Maloney, and E. A. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically shears zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental data set based on gauge observations and satellite estimates. J. Climate, 16, 21972214, https://doi.org/10.1175/2769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically shears zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 105 105 105
Full Text Views 49 49 49
PDF Downloads 57 57 57

Effect of the MJO on East Asian Winter Rainfall as Revealed by an SVD Analysis

View More View Less
  • 1 a Central Weather Bureau, Taipei, Taiwan
  • | 2 b Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 3 c Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 4 d Program in Atmospheric and Oceanic Science, Princeton University, Princeton, New Jersey
  • | 5 e NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper studies the influences of the Madden–Julian oscillation (MJO) on East Asian (EA) winter rainfall using the singular value decomposition (SVD) approach. This method uses two-dimensional instead of latitudinally averaged variables in the commonly used real-time multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December–March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth of a cycle earlier than the phases of convection development over the Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizontal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO heating (or the IO–MCWP heating dipole) induced Rossby wave teleconnection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw

This article is included in the Years of the Maritime Continent Special Collection.

Abstract

This paper studies the influences of the Madden–Julian oscillation (MJO) on East Asian (EA) winter rainfall using the singular value decomposition (SVD) approach. This method uses two-dimensional instead of latitudinally averaged variables in the commonly used real-time multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December–March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth of a cycle earlier than the phases of convection development over the Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizontal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO heating (or the IO–MCWP heating dipole) induced Rossby wave teleconnection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw

This article is included in the Years of the Maritime Continent Special Collection.

Save