• Alexander, L., 2011: Extreme heat rooted in dry soils. Nat. Geosci., 4, 1213, https://doi.org/10.1038/ngeo1045.

  • Alexander, L., P. Uotila, and N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res., 114, D18116, https://doi.org/10.1029/2009JD012301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, https://doi.org/10.1175/2008JHM1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Bladé, I., B. Liebmann, D. Fortuny, and G. J. van Oldenborgh, 2012: Observed and simulated impacts of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Climate Dyn., 39, 709727, https://doi.org/10.1007/s00382-011-1195-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and et al. , 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherchi, A., H. Annamalai, S. Masina, and A. Navarra, 2014: South Asian summer monsoon and the Eastern Mediterranean climate: The monsoon–desert mechanism in CMIP5 simulations. J. Climate, 27, 68776903, https://doi.org/10.1175/JCLI-D-13-00530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and et al. , 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533, https://doi.org/10.1038/nature03972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10, 249266, https://doi.org/10.1007/BF00208992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, F. Giorgi, and X. Gao, 2007: Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett., 34, L11706, https://doi.org/10.1029/2007GL030000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and et al. , 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and et al. , 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, T. Woollings, and K. Hodges, 2013: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett., 8, 034037, https://doi.org/10.1088/1748-9326/8/3/034037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., B. Pohl, H. Douville, and B. Fontaine, 2011: West African Monsoon influence on the summer Euro-Atlantic circulation. Geophys. Res. Lett., 38, L09705, https://doi.org/10.1029/2011GL047150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., F. J. Doblas-Reyes, and C. S. Coelho, 2012: Understanding Atlantic multi-decadal variability prediction skill. Geophys. Res. Lett., 39, L18708, https://doi.org/10.1029/2012GL053283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, J. Baehr, and J. Bader, 2017: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Climate Dyn., 48, 35473563, https://doi.org/10.1007/s00382-016-3283-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, A. Eichhorn, J. Baehr, and J. Bader, 2019: Atmospheric pathway between Atlantic multidecadal variability and European summer temperature in the atmospheric general circulation model ECHAM6. Climate Dyn., 53, 209224, https://doi.org/10.1007/s00382-018-4578-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and et al. , 2017: Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect., 125, 087006, https://doi.org/10.1289/EHP1026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R., and et al. , 2020: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR—Description, model computational performance and basic validation. Geosci. Model Dev., 13, 35073527, https://doi.org/10.5194/gmd-13-3507-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanlon, H. M., G. C. Hegerl, S. F. B. Tett, and D. M. Smith, 2013: Can a decadal forecasting system predict temperature extreme indices? J. Climate, 26, 37283744, https://doi.org/10.1175/JCLI-D-12-00512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodayar, S., A. Sehlinger, H. Feldmann, and C. Kottmeier, 2015: Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe. Int. J. Climatol., 35, 18991915, https://doi.org/10.1002/joc.4096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, https://doi.org/10.1175/JCLI-D-11-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-S., B. Wu, and T.-J. Zhou, 2016: Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal oscillation? Atmos. Oceanic Sci. Lett., 9, 451457, https://doi.org/10.1080/16742834.2016.1233800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linderholm, H. W., and C. K. Folland, 2017: Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales. Past Global Changes Mag., 25, 5760, https://doi.org/10.22498/pages.25.1.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., M. G. Donat, H. W. Rust, L. V. Alexander, and M. H. England, 2019: Decadal predictability of temperature and precipitation means and extremes in a perfect-model experiment. Climate Dyn., 53, 37113729, https://doi.org/10.1007/s00382-019-04734-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loboda, T., O. Krankina, I. Savin, E. Kurbanov, and J. Hall, 2017: Land management and the impact of the 2010 extreme drought event on the agricultural and ecological systems of European Russia. Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991, G. Gutman and V. Radeloff, Eds., Springer, 173–192.

    • Crossref
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation 27, Institut Pierre-Simon Laplace, 193 pp.

  • Mariotti, A., and A. Dell’Aquila, 2012: Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Climate Dyn., 38, 11291145, https://doi.org/10.1007/s00382-011-1056-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. D. Thorncroft, 2014: The impact of the AMO on the West African monsoon annual cycle. Quart. J. Roy. Meteor. Soc., 140, 3146, https://doi.org/10.1002/qj.2107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, and L. Zanna, 2017: The dynamical influence of the Atlantic multidecadal oscillation on continental climate. J. Climate, 30, 72137230, https://doi.org/10.1175/JCLI-D-16-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., E. Guilyardi, D. Swingedouw, J. Mignot, and S. Nguyen, 2017: Reconstructing extreme AMOC events through nudging of the ocean surface: A perfect model approach. Climate Dyn., 49, 34253441, https://doi.org/10.1007/s00382-017-3521-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudar, T., E. Sanchez-Gomez, F. Chauvin, J. Cattiaux, L. Terray, and C. Cassou, 2017: Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Climate Dyn., 49, 36933713, https://doi.org/10.1007/s00382-017-3541-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qasmi, S., C. Cassou, and J. Boé, 2017: Teleconnection between Atlantic multidecadal variability and European temperature: Diversity and evaluation of the Coupled Model Intercomparison Project phase 5 models. Geophys. Res. Lett., 44, 11 14011 149, https://doi.org/10.1002/2017GL074886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qasmi, S., C. Cassou, and J. Boé, 2020: Teleconnection processes linking the intensity of the Atlantic multidecadal variability to the climate impacts over Europe in boreal winter. J. Climate, 33, 26812700, https://doi.org/10.1175/JCLI-D-19-0428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robine, J.-M., S. L. K. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J.-P. Michel, and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol., 331, 171178, https://doi.org/10.1016/j.crvi.2007.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J. I., R. T. Sutton, and D. M. Smith, 2012: Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett., 39, L19713, https://doi.org/10.1029/2012GL053370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., and C. Cassou, 2015: Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Climate Dyn., 44, 229253, https://doi.org/10.1007/s00382-014-2176-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 36793700, https://doi.org/10.1175/JCLI-D-17-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, M., T. Economou, K. Salmon, and S. Jones, 2017: Historical trends and variability in heat waves in the United Kingdom. Atmosphere, 8, 191, https://doi.org/10.3390/atmos8100191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, and M. Ziese, 2018: GPCC full data monthly version 2018.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 8 June 2020, https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050.

    • Crossref
    • Export Citation
  • Seager, R., and M. Ting, 2017: Decadal drought variability over North America: Mechanisms and predictability. Curr. Climate Change Rep., 3, 141149, https://doi.org/10.1007/s40641-017-0062-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and et al. , 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, https://doi.org/10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, https://doi.org/10.1038/ngeo1595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic multidecadal SST Oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, https://doi.org/10.1016/j.jmarsys.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, https://doi.org/10.1007/s00382-012-1313-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010). Geophys. Res. Lett., 39, L12704, https://doi.org/10.1029/2012GL052371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and et al. , 2018: Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Amer. Meteor. Soc., 99, 18671886, https://doi.org/10.1175/BAMS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, https://doi.org/10.1175/2009JCLI2568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 285 285 27
Full Text Views 60 60 3
PDF Downloads 77 77 4

Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability

View More View Less
  • 1 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
  • | 2 CECI, Université de Toulouse, CNRS, Cerfacs, Toulouse, France
  • | 3 Barcelona Supercomputing Center, Barcelona, Spain
© Get Permissions
Restricted access

Abstract

The influence of the Atlantic multidecadal variability (AMV) and its amplitude on the Euro-Mediterranean summer climate is studied in two climate models, namely CNRM-CM5 and EC-Earth3P. Large ensembles of idealized experiments have been conducted in which North Atlantic sea surface temperatures are relaxed toward different amplitudes of the observed AMV anomalies. In agreement with observations, during a positive phase of the AMV both models simulate an increase (decrease) in temperature of 0.2°–0.8°C and a decrease (increase) in precipitation over the Mediterranean basin of 0.1–0.2 mm day−1 (northern half of Europe) compared to a negative phase. Heatwave durations over the Mediterranean land regions are 40% (up to 85% over the eastern regions) longer for a moderate amplitude of the AMV. Lower and higher amplitudes lead to longer durations of ~30% and ~100%, respectively. A comparison with observed heatwaves indicates that the AMV can considerably modulate the current anthropogenically forced response on heatwaves durations depending on the area and on the AMV amplitude. The related anticyclonic anomalies over the Mediterranean basin are associated with drier soils and a reduction of cloud cover, which concomitantly induce a decrease (increase) of the latent (sensible) heat flux, and an enhancement of the downward radiative fluxes over lands. It is found that both tropical and extratropical forcings from the AMV are needed to trigger mechanisms, which modulate the atmospheric circulation over the Euro-Atlantic region. The amplitude of the local climate response over the Mediterranean basin evolves linearly with the amplitude of the AMV. However, the strength of this relationship differs between the models, and depends on their intrinsic biases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0982.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saïd Qasmi, qasmi@cerfacs.fr

Abstract

The influence of the Atlantic multidecadal variability (AMV) and its amplitude on the Euro-Mediterranean summer climate is studied in two climate models, namely CNRM-CM5 and EC-Earth3P. Large ensembles of idealized experiments have been conducted in which North Atlantic sea surface temperatures are relaxed toward different amplitudes of the observed AMV anomalies. In agreement with observations, during a positive phase of the AMV both models simulate an increase (decrease) in temperature of 0.2°–0.8°C and a decrease (increase) in precipitation over the Mediterranean basin of 0.1–0.2 mm day−1 (northern half of Europe) compared to a negative phase. Heatwave durations over the Mediterranean land regions are 40% (up to 85% over the eastern regions) longer for a moderate amplitude of the AMV. Lower and higher amplitudes lead to longer durations of ~30% and ~100%, respectively. A comparison with observed heatwaves indicates that the AMV can considerably modulate the current anthropogenically forced response on heatwaves durations depending on the area and on the AMV amplitude. The related anticyclonic anomalies over the Mediterranean basin are associated with drier soils and a reduction of cloud cover, which concomitantly induce a decrease (increase) of the latent (sensible) heat flux, and an enhancement of the downward radiative fluxes over lands. It is found that both tropical and extratropical forcings from the AMV are needed to trigger mechanisms, which modulate the atmospheric circulation over the Euro-Atlantic region. The amplitude of the local climate response over the Mediterranean basin evolves linearly with the amplitude of the AMV. However, the strength of this relationship differs between the models, and depends on their intrinsic biases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0982.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saïd Qasmi, qasmi@cerfacs.fr

Supplementary Materials

    • Supplemental Materials (PDF 4.45 MB)
Save