• Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5, 944958, https://doi.org/10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2003: Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res., 108, 4732, https://doi.org/10.1029/2003JD003805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, https://doi.org/10.1002/grl.50200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bratcher, A. J., and B. S. Giese, 2002: Tropical Pacific decadal variability and global warming. Geophys. Res. Lett., 29, 1918, https://doi.org/10.1029/2002GL015191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, E. Di Lorenzo, A. C. Subramanian, and A. J. Miller, 2019: Predictability of US West Coast Ocean temperatures is not solely due to ENSO. Sci Rep., 9, 10993, https://doi.org/10.1038/s41598-019-47400-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, https://doi.org/10.1175/JCLI-D-15-0322.1.

  • Chen, Z., B. Gan, L. Wu, and F. Jia, 2018: Pacific–North American teleconnection and North Pacific Oscillation: Historical simulation and future projection in CMIP5 models. Climate Dyn., 50, 43794403, https://doi.org/10.1007/s00382-017-3881-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S. I. An, J. S. Kug, and S. W. Yeh, 2011: The role of mean state on changes in El Niño’s flavor. Climate Dyn., 37, 12051215, https://doi.org/10.1007/s00382-010-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S. I. An, S. W. Yeh, and J. Y. Yu, 2013: ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 14851501, https://doi.org/10.1175/JCLI-D-12-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. T., S. B. Power, A. Sullivan, and F. Delage, 2019: The role of the South Pacific in modulating tropical Pacific variability. Sci. Rep., 9, 18311, https://doi.org/10.1038/s41598-019-52805-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific ocean. Nat. Geosci., 3, 762765, https://doi.org/10.1038/ngeo984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2013: Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography, 26, 6881, https://doi.org/10.5670/oceanog.2013.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and Y. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 20172034, https://doi.org/10.1007/s00382-014-2303-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y. Tseng, C. Sun, and F. Xie, 2017: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos., 122, 279298, https://doi.org/10.1002/2016JD025502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128, 123, https://doi.org/10.1002/qj.200212857901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067, https://doi.org/10.1175/2010JCLI3584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, https://doi.org/10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2014: ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dyn., 43, 305318, https://doi.org/10.1007/s00382-014-2064-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and Y.-L. Chen, 2011: Decadal to bi-decadal rainfall variation in the western Pacific: A footprint of South Pacific decadal variability? Geophys. Res. Lett., 38, L03703, https://doi.org/10.1029/2010GL046278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., R. Seager, and M. A. Cane, 2004: Predictability of tropical Pacific decadal variability in an intermediate model. J. Climate, 17, 28422850, https://doi.org/10.1175/1520-0442(2004)017<2842:POTPDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, https://doi.org/10.1029/2012GL052006.

  • Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11, 22732296, https://doi.org/10.1175/1520-0442(1998)011<2273:MAODVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, https://doi.org/10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, M., S.-W. Yeh, Y.-G. Park, and Y.-K. Lee, 2012: Changes in the linear relationship of ENSO–PDO under the global warming. Int. J. Climatol., 33, 11211128, https://doi.org/10.1002/joc.3497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., P. J. Gleckler, and T. Lee, 2014: Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations. Climate Dyn., 43, 12711283, https://doi.org/10.1007/s00382-013-1939-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., D. E. Waliser, J.-L. F. Li, F. W. Landerer, and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, https://doi.org/10.1175/JCLI-D-12-00591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2019: Separating the North and South Pacific meridional modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett., 46, 906915, https://doi.org/10.1029/2018GL080320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., G. M. Wellington, and D. P. Schrag, 2000: Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science, 290, 11451148, https://doi.org/10.1126/science.290.5494.1145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995, https://doi.org/10.1175/2011JCLI3980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and E. Di Lorenzo, 2018: Mechanisms and predictability of Pacific decadal variability. Curr. Climate Change Rep., 4, 128144, https://doi.org/10.1007/s40641-018-0090-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Wu, R. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett., 29, 1404, https://doi.org/10.1029/2001GL013735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., X. Zhang, J. A. Church, and J. Hu, 2016: Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models. Int. J. Climatol., 36, 37233740, https://doi.org/10.1002/joc.4587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, E., D. Antoine, F. D’Ortenzio, and B. Gentili, 2009: Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science, 326, 12531256, https://doi.org/10.1126/science.1177012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997-98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. X. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 14051446, https://doi.org/10.1002/qj.49712253409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, https://doi.org/10.1175/JCLI4165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A. S. Unnikrishnan, and C. Cassou, 2017: Influence of ENSO on the Pacific decadal oscillation in CMIP models. Climate Dyn., 49, 33093326, https://doi.org/10.1007/s00382-016-3514-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, https://doi.org/10.1175/JCLI-D-13-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., S. I. An, S. W. Yeh, and N. Schneider, 2013: Quantitative assessment of the climate components driving the Pacific decadal oscillation in climate models. Theor. Appl. Climatol., 112, 431445, https://doi.org/10.1007/s00704-012-0730-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. Roberto Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. McGowan, 1995: Climatic warming and the decline of zooplankton in the California Current. Science, 267, 13241326, https://doi.org/10.1126/science.267.5202.1324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific oscillation. Int. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092, https://doi.org/10.1175/JCLI3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, https://doi.org/10.1038/nclimate2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., and B. P. Kirtman, 2005: Pacific decadal variability and decadal ENSO amplitude modulation. Geophys. Res. Lett., 32, L05703, https://doi.org/10.1029/2004GL021731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, D. L., B. Gan, L. Wu, and A. J. Miller, 2018: The North Pacific Gyre Oscillation and mechanisms of its decadal variability in CMIP5 models. J. Climate, 31, 24872509, https://doi.org/10.1175/JCLI-D-17-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, B. Y., M. Kwon, H. S. Min, and J.-S. Kug, 2014: Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Climate Dyn., 44, 15211540, https://doi.org/10.1007/s00382-014-2349-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and E. Di Lorenzo, 2020: The impacts of extra-tropical ENSO precursors on tropical Pacific decadal-scale variability. Sci. Rep., 10, 3031, https://doi.org/10.1038/s41598-020-59253-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 124 124 124
Full Text Views 43 43 43
PDF Downloads 52 52 52

Tropical Pacific Decadal Variability and ENSO Precursor in CMIP5 Models

View More View Less
  • 1 Program in Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
  • 2 Bren School of Environmental Science and Management, University of California Santa Barbara
© Get Permissions
Restricted access

Abstract

Observational analyses suggest that a significant fraction of the tropical Pacific decadal variability (TPDV) (~60%–70%) is energized by the combined action of extratropical precursors of El Niño–Southern Oscillation (ENSO) originating from the North and South Pacific. Specifically, the growth and decay of the basin-scale TPDV pattern (time scale = ~1.5–2 years) is linked to the following sequence: ENSO precursors (extratropics, growth phase) → ENSO (tropics, peak phase) → ENSO successors (extratropics, decay phase) resulting from ENSO teleconnections. This sequence of teleconnections is an important physical basis for Pacific climate predictability. Here we examine the TPDV and its connection to extratropical dynamics in 20 models from phase 5 of the Coupled Model Intercomparison Project (CMIP). We find that most models (~80%) can simulate the observed spatial pattern (R > 0.6) and frequency characteristics of the TPDV. In 12 models, more than 65% of the basinwide Pacific decadal variability (PDV) originates from TPDV, which is comparable with observations (~70%). However, despite reproducing the basic spatial and temporal statistics, models underestimate the influence of the North and South Pacific ENSO precursors to the TPDV, and most of the models’ TPDV originates in the tropics. Only 35%–40% of the models reproduce the observed extratropical ENSO precursor patterns (R > 0.5). Models with a better representation of the ENSO precursors show 1) better basin-scale signatures of TPDV and 2) stronger ENSO teleconnections from/to the tropics that are consistent with observations. These results suggest that better representation of ENSO precursor dynamics in CMIP may lead to improved Pacific decadal variability dynamics and predictability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0158.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Zhao, zhaoyywl@gmail.com

Abstract

Observational analyses suggest that a significant fraction of the tropical Pacific decadal variability (TPDV) (~60%–70%) is energized by the combined action of extratropical precursors of El Niño–Southern Oscillation (ENSO) originating from the North and South Pacific. Specifically, the growth and decay of the basin-scale TPDV pattern (time scale = ~1.5–2 years) is linked to the following sequence: ENSO precursors (extratropics, growth phase) → ENSO (tropics, peak phase) → ENSO successors (extratropics, decay phase) resulting from ENSO teleconnections. This sequence of teleconnections is an important physical basis for Pacific climate predictability. Here we examine the TPDV and its connection to extratropical dynamics in 20 models from phase 5 of the Coupled Model Intercomparison Project (CMIP). We find that most models (~80%) can simulate the observed spatial pattern (R > 0.6) and frequency characteristics of the TPDV. In 12 models, more than 65% of the basinwide Pacific decadal variability (PDV) originates from TPDV, which is comparable with observations (~70%). However, despite reproducing the basic spatial and temporal statistics, models underestimate the influence of the North and South Pacific ENSO precursors to the TPDV, and most of the models’ TPDV originates in the tropics. Only 35%–40% of the models reproduce the observed extratropical ENSO precursor patterns (R > 0.5). Models with a better representation of the ENSO precursors show 1) better basin-scale signatures of TPDV and 2) stronger ENSO teleconnections from/to the tropics that are consistent with observations. These results suggest that better representation of ENSO precursor dynamics in CMIP may lead to improved Pacific decadal variability dynamics and predictability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0158.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Zhao, zhaoyywl@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 4.88 MB)
Save