• Ait-Chaalal, F., and T. Schneider, 2015: Why eddy momentum fluxes are concentrated in the upper troposphere. J. Atmos. Sci., 72, 15851604, https://doi.org/10.1175/JAS-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, https://doi.org/10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, https://doi.org/10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R. H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, https://doi.org/10.1029/2004JD005669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and D. Luo, 2017: Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett., 44, 34113419, https://doi.org/10.1002/2016GL072387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. Wu, and W. Chen, 2014: Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J. Climate, 27, 54335450, https://doi.org/10.1175/JCLI-D-13-00731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, X., and Z. B. Sun, 1999: East Asian winter monsoon index and its variation analysis. J. Nanjing Inst. Meteor., 22, 321325.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, https://doi.org/10.1175/JCLI4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., S. Wang, and J. Zhu, 2001: East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Hopsch, S., J. Cohen, and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus, 64, 18624, https://doi.org/10.3402/tellusa.v64i0.18624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby-wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 12241237, https://doi.org/10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby-wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, https://doi.org/10.1016/0377-0265(83)90013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., D. Yoon, D. H. Cha, Y. Choi, J. Kim, and S. W. Son, 2019: Impacts of the East Asian winter monsoon and local sea surface temperature on heavy snowfall over the Yeongdong region. J. Climate, 32, 67836802, https://doi.org/10.1175/JCLI-D-18-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labe, Z., Y. Peings, and G. Magnusdottir, 2019: The effect of QBO phase on the atmospheric response to projected Arctic sea ice loss in early winter. Geophys. Res. Lett., 46, 76637671, https://doi.org/10.1029/2019GL083095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labe, Z., Y. Peings, and G. Magnusdottir, 2020: Warm Arctic, cold Siberia pattern: Role of full Arctic amplification versus sea ice loss alone. Geophys. Res. Lett., 47, e2020GL088583, https://doi.org/10.1029/2020GL088583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y., G. Lim, and J. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, https://doi.org/10.1029/2009JD012813.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., X. Chen, J. Overland, I. Simmonds, Y. Wu, and P. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea-ice loss and mid-latitude cold extremes. J. Climate, 32, 42354261, https://doi.org/10.1175/JCLI-D-18-0449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, W., C. Yang, C. Chu, T. Li, J. Tan, and H. Kan, 2013: The impact of the 2008 cold spell on mortality in Shanghai, China. Int. J. Biometeor., 57, 179184, https://doi.org/10.1007/s00484-012-0545-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838842, https://doi.org/10.1038/ngeo2820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenna, C. M., T. J. Bracegirdle, E. F. Shuckburgh, P. H. Haynes, and M. M. Joshi, 2018: Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts. Geophys. Res. Lett., 45, 945954, https://doi.org/10.1002/2017GL076433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and Coauthors, 2010: Northern Hemisphere extratropical tropospheric planetary waves and their low-frequency variability: Their vertical structure and interaction with transient eddies and surface thermal contrasts. Climate Dyn., 189, 149179, https://doi.org/10.1029/2008GM000789.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, https://doi.org/10.1002/2016GL068330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, T. Sato, and J. Ukita, 2019: Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss. Nat. Commun., 10, 5111, https://doi.org/10.1038/s41467-019-13124-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Rourke, A. K., and G. K. Vallis, 2013: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J. Atmos. Sci., 70, 26142628, https://doi.org/10.1175/JAS-D-12-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., J. A. Screen, and M. Collins, 2017: Ocean–atmosphere state dependence of the atmospheric response to Arctic sea ice loss. J. Climate, 30, 15371552, https://doi.org/10.1175/JCLI-D-16-0531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, https://doi.org/10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: The global sea-ice and sea surface temperature (HadISST) data sets. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggieri, P., R. Buizza, and G. Visconti, 2016: On the link between Barents-Kara sea ice variability and European blocking. J. Geophys. Res. Atmos., 121, 56645679, https://doi.org/10.1002/2015JD024021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggieri, P., F. Kucharski, R. Buizza, and M. H. P. Ambaum, 2017: The transient atmospheric response to a reduction of sea-ice cover in the Barents and Kara Seas. Quart. J. Roy. Meteor. Soc., 143, 16321640, https://doi.org/10.1002/qj.3034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, K., and R. Kawamura, 2009: Remote response of the East Asian winter monsoon to tropical forcing related to El Niño–Southern Oscillation. J. Geophys. Res., 114, D06105, https://doi.org/10.1029/2008JD010824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and R. Blackport, 2019: How robust is the atmospheric response to projected Arctic sea ice loss across climate models? Geophys. Res. Lett., 46, 11 40611 415, https://doi.org/10.1029/2019GL084936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2007: Summertime ENSO–North African–Asian jet teleconnection and implications for the Indian monsoons. Geophys. Res. Lett., 34, L11702, https://doi.org/10.1029/2006GL029143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, S., 1957: Nonparametric statistics. Amer. Stat., 11, 1319.

  • Smith, K. L., R. R. Neely, D. R. Marsh, and L. M. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 25572577, https://doi.org/10.1175/JCLI-D-14-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and Q. Zhang, 1998: Response of the Asian winter and summer monsoon to ENSO events (in Chinese). Chin. J. Atmos. Sci., 22, 399407.

    • Search Google Scholar
    • Export Citation
  • Wang, C., X. Q. An, P. Q. Zhang, Z. B. Sun, M. Cui, and L. Ma, 2019: Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing. Atmos. Res., 215, 165177, https://doi.org/10.1016/j.atmosres.2018.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870, https://doi.org/10.1007/s00376-009-9094-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and J. Feng, 2011: Two major modes of the wintertime precipitation over China (in Chinese). Chin. J. Atmos. Sci., 35, 11051116.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and R. Huang, 2009: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate., 22, 600614, https://doi.org/10.1175/2008JCLI 2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. L., J. A. Screen, and A. A. Scaife, 2020: Links between Barents-Kara Sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys. Res. Lett., 47, e2019GL085679, https://doi.org/10.1029/2019GL085679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittman, M A H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479496. [J], https://doi.org/10.1175/JAS3828.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and R. Huang, 1999: Effects of the extremes in the North Atlantic Oscillation on East Asia winter monsoon (in Chinese). Chin. J. Atmos. Sci., 23, 641653.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002a: Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Adv. Atmos. Sci., 19, 297320, https://doi.org/10.1007/s00376-002-0024-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002b: Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. Zhang, 2011: Effects of autumn–winter Arctic sea ice on winter Siberian high. Chin. Sci. Bull., 56, 32203228, https://doi.org/10.1007/s11434-011-4696-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Z. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 68416858, https://doi.org/10.1175/JCLI-D-14-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y. T., and K. L. Smith, 2016: Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. J. Climate, 29, 20412058, https://doi.org/10.1175/JCLI-D-15-0602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, H., and Coauthors, 2013: Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong Province, China. Environ. Health Perspect., 121, 210216, https://doi.org/10.1289/ehp.1104541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, Z. Wang, F. Xie, and F. Wang, 2015: The influence of ENSO on northern midlatitude ozone during the winter to spring transition. J. Climate, 28, 47744793, https://doi.org/10.1175/JCLI-D-14-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2018: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Xie, Z. Ma, C. Zhang, M. Xu, T. Wang, and R. Zhang, 2019: Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter. J Geophys Res. Atmos., 124, 12 56812 586, https://doi.org/10.1029/2019JD030966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, I. R. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, 2018a: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, and K. L. Smith, 2018b: Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Climate Dyn., 50, 527539, https://doi.org/10.1007/s00382-017-3624-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 133 133 133
Full Text Views 77 77 77
PDF Downloads 114 114 114

Impact of Sea Ice Reduction in the Barents and Kara Seas on the Variation of the East Asian Trough in Late Winter

View More View Less
  • 1 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, China
© Get Permissions
Restricted access

Abstract

Using the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) dataset and the Specified Chemistry Whole Atmosphere Community Climate Model (WACCM-SC), the impacts of sea ice reduction in the Barents–Kara Seas (BKS) on the East Asian trough (EAT) in late winter are investigated. Results from both reanalysis data and simulations show that the BKS sea ice reduction leads to a deepened EAT in late winter, especially in February, while the EAT axis tilt is not sensitive to the BKS sea ice reduction. Further analysis shows that the BKS sea ice reduction influences the EAT through the tropospheric and stratospheric pathways. For the tropospheric pathway, the results from a linearized barotropic model and Rossby wave ray tracing model reveal that long Rossby wave trains stimulated by the BKS sea ice loss propagate downstream to the North Pacific, strengthening the EAT. For the stratospheric pathway, the upward planetary waves enhanced by the BKS sea ice reduction shift the subpolar westerlies near the tropopause southward. With the critical lines displaced equatorward, the poleward transient eddies break at lower latitudes, shifting the eddy momentum deposit throughout the troposphere equatorward. Tropospheric westerlies maintained by eddy momentum deposit are also shifted southward, inducing the cyclonic anomalies over the North Pacific and deepening the EAT in late winter. Nudging experiments show that the tropospheric pathway only contributes to around 29.7% of the deepening of the EAT in February induced by the BKS sea ice loss, while the remaining 70.3% is caused by stratosphere–troposphere coupling.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0205.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenshou Tian, wstian@lzu.edu.cn

Abstract

Using the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) dataset and the Specified Chemistry Whole Atmosphere Community Climate Model (WACCM-SC), the impacts of sea ice reduction in the Barents–Kara Seas (BKS) on the East Asian trough (EAT) in late winter are investigated. Results from both reanalysis data and simulations show that the BKS sea ice reduction leads to a deepened EAT in late winter, especially in February, while the EAT axis tilt is not sensitive to the BKS sea ice reduction. Further analysis shows that the BKS sea ice reduction influences the EAT through the tropospheric and stratospheric pathways. For the tropospheric pathway, the results from a linearized barotropic model and Rossby wave ray tracing model reveal that long Rossby wave trains stimulated by the BKS sea ice loss propagate downstream to the North Pacific, strengthening the EAT. For the stratospheric pathway, the upward planetary waves enhanced by the BKS sea ice reduction shift the subpolar westerlies near the tropopause southward. With the critical lines displaced equatorward, the poleward transient eddies break at lower latitudes, shifting the eddy momentum deposit throughout the troposphere equatorward. Tropospheric westerlies maintained by eddy momentum deposit are also shifted southward, inducing the cyclonic anomalies over the North Pacific and deepening the EAT in late winter. Nudging experiments show that the tropospheric pathway only contributes to around 29.7% of the deepening of the EAT in February induced by the BKS sea ice loss, while the remaining 70.3% is caused by stratosphere–troposphere coupling.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0205.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenshou Tian, wstian@lzu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 989.07 KB)
Save