• Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., and R. Armstrong, 2013: Northern Hemisphere EASE-grid 2.0 weekly snow cover and sea ice extent, version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 26 August 2019, https://doi.org/10.5067/P7O0HGJLYUQU.

    • Crossref
    • Export Citation
  • Cao, Y., S. Liang, T. He, and X. Chen, 2016: Evaluation of four reanalysis surface albedo data sets in Arctic using a satellite product. IEEE Geosci. Remote Sens. Lett., 13, 384388, https://doi.org/10.1109/LGRS.2016.2515159.

    • Search Google Scholar
    • Export Citation
  • Carmack, E., and Coauthors, 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Amer. Meteor. Soc., 96, 20792105, https://doi.org/10.1175/BAMS-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., J. Kay, H. Chepfer, J. English, and G. de Boer, 2012: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, L053385, https://doi.org/10.1029/2012GL053385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., V. Noël, M. Chiriaco, B. Wielicki, D. Winker, N. Loeb, and R. Wood, 2018: The potential of a multidecade spaceborne lidar record to constrain cloud feedback. J. Geophys. Res. Atmos., 123, 54335454, https://doi.org/10.1002/2017JD027742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., A. Behrangi, T. S. L’Ecuyer, N. B. Wood, M. D. Lebsock, and G. L. Stephens, 2016: Arctic observation and reanalysis integrated system: A new data product for validation and climate study. Bull. Amer. Meteor. Soc., 97, 907916, https://doi.org/10.1175/BAMS-D-14-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett., 29, 1956, https://doi.org/10.1029/2002GL015650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice-albedo climate feedback mechanism. J. Climate, 8, 240247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, B. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 22292247, https://doi.org/10.1007/s00382-014-2158-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, https://doi.org/10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 19371958, https://doi.org/10.5194/GMD-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, D. R., C. A. Algieri, W. D. Collins, Y. L. Roberts, and P. A. Pilewskie, 2011: Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario. J. Geophys. Res., 116, D10107, https://doi.org/10.1029/2010JD015350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gero, P. J., and D. D. Turner, 2011: Long-term trends in downwelling spectral infrared radiance over the U.S. southern Great Plains. J. Climate, 24, 48314843, https://doi.org/10.1175/2011JCLI4210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., M. A. Cane, L.-B. Tremblay, and A. Kaplan, 2006: The effects of sea-ice and land-snow concentrations on planetary albedo from the Earth Radiation Budget Experiment. Atmos.–Ocean, 44, 195205, https://doi.org/10.3137/ao.440206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., L.-B. Tremblay, B. Liepert, M. A. Cane, and R. I. Cullather, 2008: The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J. Climate, 21, 866882, https://doi.org/10.1175/2007JCLI1614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, J., Y.-S. Choi, W. Kim, H. Su, and J. H. Jiang, 2018: Observational estimation of radiative feedback to surface air temperature over northern high latitudes. Climate Dyn., 50, 615628, https://doi.org/10.1007/s00382-017-3629-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katlein, C., S. Hendricks, and J. Key, 2017: Brief communication: Antarctic sea ice gain does not compensate for increased solar absorption from Arctic ice loss. Cryosphere Discuss., https://doi.org/10.5194/tc-2016-279.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, P. Minnis, J. A. Francis, T. P. Charlock, D. A. Rutan, E. E. Clothiaux, and S. Sun-Mack, 2006: Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set. Geophys. Res. Lett., 33, L19804, https://doi.org/10.1029/2006GL026685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and T. L’Ecuyer, 2013: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos., 118, 72197236, https://doi.org/10.1002/jgrd.50489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and G. Cesana, 2016: Recent advances in Arctic cloud and climate research. Curr. Climate Change Rep., 2, 159169, https://doi.org/10.1007/s40641-016-0051-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846, https://doi.org/10.1175/2007JCLI1946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L., D. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, https://doi.org/10.1002/jgrd.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., 2017: Uncertainty in detecting trend: A new criterion and its applications to global SST. Climate Dyn., 49, 28812893, https://doi.org/10.1007/s00382-016-3483-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2020: Toward a consistent definition between satellite and model clear-sky radiative fluxes. J. Climate, 33, 6175, https://doi.org/10.1175/JCLI-D-19-0381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlhattan, E. A., T. S. L’Ecuyer, and N. B. Miller, 2017: Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes. J. Climate, 30, 44774495, https://doi.org/10.1175/JCLI-D-16-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A., J. E. Kay, H. Chepfer, R. Guzman, and V. Yettella, 2018: Isolating the liquid cloud response to recent Arctic sea ice variability using spaceborne lidar observations. J. Geophys. Res. Atmos., 123, 473490, https://doi.org/10.1002/2017JD027248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A., J. E. Kay, W. Frey, H. Chepfer, and R. Guzman, 2019: Cloud response to Arctic sea ice loss and implications for future feedback in the CESM1 climate model. J. Geophys. Res. Atmos., 124, 10031020, https://doi.org/10.1029/2018JD029142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., and M. Årthun, 2017: Toward an ice-free Barents Sea. Geophys. Res. Lett., 44, 83878395, https://doi.org/10.1002/2017GL074304.

  • Onarheim, I. H., T. Eldevik, L. H. Smedsrud, and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. J. Climate, 31, 49174932, https://doi.org/10.1175/JCLI-D-17-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D., T. Grenfell, B. Light, and P. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phojanamongkolkij, N., S. Kato, B. A. Wielicki, P. C. Taylor, and M. G. Mlynczak, 2014: A comparison of climate signal trend detection uncertainty analysis methods. J. Climate, 27, 33633376, https://doi.org/10.1175/JCLI-D-13-00400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pistone, K., I. Eisenman, and V. Ramanathan, 2014: Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA, 111, 33223326, https://doi.org/10.1073/pnas.1318201111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2005: Surface contribution to planetary albedo variability in cryosphere regions. J. Climate, 18, 52395252, https://doi.org/10.1175/JCLI3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and Coauthors, 2011: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dyn., 37, 16431660, https://doi.org/10.1007/s00382-010-0937-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sledd, A., and T. L’Ecuyer, 2019: How much do clouds mask the impacts of Arctic sea ice and snow cover variations? Different perspectives from observations and reanalyses. Atmosphere, 10, 12, https://doi.org/10.3390/atmos10010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, https://doi.org/10.1002/2014RG000449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiao, G. C., and Coauthors, 1990: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J. Geophys. Res., 95, 20 50720 517, https://doi.org/10.1029/JD095iD12p20507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. Jungclaus, and J. Marotzke, 2011: Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett., 38, L02707, https://doi.org/10.1029/2010GL045698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignesh, P. P., J. H. Jiang, P. Kishore, H. Su, T. Smay, N. Brighton, and I. Velicogna, 2020: Assessment of CMIP6 cloud fraction and comparison with satellite observations. Earth Space Sci., 7, e2019EA000975, https://doi.org/10.1029/2019EA000975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., J. Key, Y. Liu, C. Fowler, J. Maslanik, and M. Tschudi, 2012: Arctic climate variability and trends from satellite observations. Adv. Meteor., 2012, 505613, https://doi.org/10.1155/2012/505613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 14917 161, https://doi.org/10.1029/98JD00995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, https://doi.org/10.1175/BAMS-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 372 372 47
Full Text Views 44 44 7
PDF Downloads 52 52 9

Uncertainty in Forced and Natural Arctic Solar Absorption Variations in CMIP6 Models

View More View Less
  • 1 University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

The Arctic is rapidly changing, with increasingly dramatic sea ice loss and surface warming in recent decades. Shortwave radiation plays a key role in Arctic warming during summer months, and absorbed shortwave radiation has been increasing largely because of greater sea ice loss. Clouds can influence this ice–albedo feedback by modulating the amount of shortwave radiation incident on the Arctic Ocean. In turn, clouds impact the amount of time that must elapse before forced trends in Arctic shortwave absorption emerge from internal variability. This study determines whether the forced climate response of absorbed shortwave radiation in the Arctic has emerged in the modern satellite record and global climate models. From 18 years of satellite observations from CERES-EBAF, we find that recent declines in sea ice are large enough to produce a statistically significant trend (1.7 × 106 PJ or 3.9% per decade) in observed clear-sky absorbed shortwave radiation. However, clouds preclude any forced trends in all-sky absorption from emerging within the existing satellite record. Across 18 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), the predicted time to emergence of absorbed shortwave radiation trends varies from 8 to 39 and from 8 to 35 years for all-sky and clear-sky conditions, respectively, across two future scenarios. Furthermore, most models fail to reproduce the observed cloud delaying effect because of differences in internal variability. Contrary to observations, one-third of models suggest that clouds may reduce the time to emergence of absorbed shortwave trends relative to clear skies, an artifact that may be the result of inaccurate representations of cloud feedbacks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0244.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne Sledd, sledd@wisc.edu

Abstract

The Arctic is rapidly changing, with increasingly dramatic sea ice loss and surface warming in recent decades. Shortwave radiation plays a key role in Arctic warming during summer months, and absorbed shortwave radiation has been increasing largely because of greater sea ice loss. Clouds can influence this ice–albedo feedback by modulating the amount of shortwave radiation incident on the Arctic Ocean. In turn, clouds impact the amount of time that must elapse before forced trends in Arctic shortwave absorption emerge from internal variability. This study determines whether the forced climate response of absorbed shortwave radiation in the Arctic has emerged in the modern satellite record and global climate models. From 18 years of satellite observations from CERES-EBAF, we find that recent declines in sea ice are large enough to produce a statistically significant trend (1.7 × 106 PJ or 3.9% per decade) in observed clear-sky absorbed shortwave radiation. However, clouds preclude any forced trends in all-sky absorption from emerging within the existing satellite record. Across 18 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), the predicted time to emergence of absorbed shortwave radiation trends varies from 8 to 39 and from 8 to 35 years for all-sky and clear-sky conditions, respectively, across two future scenarios. Furthermore, most models fail to reproduce the observed cloud delaying effect because of differences in internal variability. Contrary to observations, one-third of models suggest that clouds may reduce the time to emergence of absorbed shortwave trends relative to clear skies, an artifact that may be the result of inaccurate representations of cloud feedbacks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0244.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne Sledd, sledd@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.16 MB)
Save