Impact of Winds and Southern Ocean SSTs on Antarctic Sea Ice Trends and Variability

Edward Blanchard-Wrigglesworth Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Edward Blanchard-Wrigglesworth in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2608-0868
,
Lettie A. Roach Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Lettie A. Roach in
Current site
Google Scholar
PubMed
Close
,
Aaron Donohoe Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Aaron Donohoe in
Current site
Google Scholar
PubMed
Close
, and
Qinghua Ding Department of Geography, Earth Research Institute, University of California Santa Barbara, Santa Barbara, California

Search for other papers by Qinghua Ding in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0386.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward Blanchard-Wrigglesworth, ed@atmos.washington.edu

Abstract

Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0386.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward Blanchard-Wrigglesworth, ed@atmos.washington.edu

Supplementary Materials

    • Supplemental Materials (PDF 8.89 MB)
Save
  • Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. McCusker, and C. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett., 38, L16705, https://doi.org/10.1029/2011GL048739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. van Oldenborgh, S. Drijfhout, B. Wouters, and C. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, https://doi.org/10.1029/2012GL053393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and Q. Ding, 2019: Tropical and midlatitude impact on seasonal polar predictability in the Community Earth System Model. J. Climate, 32, 59976014, https://doi.org/10.1175/JCLI-D-19-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. Zwally, 1997: Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: October 1978 to September 1995. NASA Tech. Memo. 104627, 17 pp., https://nsidc.org/sites/nsidc.org/files/technical-references/NASA%20Technical%20Memorandum%20104647.pdf.

  • Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, 1997: Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ., 60, 357384, https://doi.org/10.1016/S0034-4257(96)00220-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., R. A. Gersten, L. V. Stock, J. Turner, G. J. Perez, and K. Cho, 2017: Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J. Climate, 30, 22512267, https://doi.org/10.1175/JCLI-D-16-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, https://doi.org/10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbiolles, F., and Coauthors, 2017: Two decades [1992–2012] of surface wind analyses based on satellite scatterometer observations. J. Mar. Syst., 168, 3856, https://doi.org/10.1016/j.jmarsys.2017.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., W. N. Meier, and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, https://doi.org/10.5194/tc-8-1289-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. R., L. M. Polvani, L. Sun, and C. Deser, 2020: Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci., 13, 275281, https://doi.org/10.1038/s41561-020-0546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, https://doi.org/10.1175/JCLI-D-14-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., G. Gollan, T. Jung, and T. Kunz, 2012: Factors influencing Northern Hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Quart. J. Roy. Meteor. Soc., 138, 19701982, https://doi.org/10.1002/qj.1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change, 143, 228250, https://doi.org/10.1016/j.gloplacha.2016.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., L. Landrum, Y. Kostov, and J. Marshall, 2017a: Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Climate Dyn., 49, 18131831, https://doi.org/10.1007/s00382-016-3424-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., L. Landrum, M. Raphael, and S. Stammerjohn, 2017b: Springtime winds drive Ross Sea ice variability and change in the following autumn. Nat. Commun., 8, 731, https://doi.org/10.1038/s41467-017-00820-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41, 42304237, https://doi.org/10.1002/2014GL060172.

  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Remote Sens., 52, 72337246, https://doi.org/10.1109/TGRS.2014.2310136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2007: Intercomparison of four different Southern Hemisphere sea level pressure datasets. Geophys. Res. Lett., 34, L10704, https://doi.org/10.1029/2007GL029251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. Renfrew, A. Orr, B. Webber, D. Holland, and M. Lazzara, 2016: Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos., 121, 62406257, https://doi.org/10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 36763680, https://doi.org/10.1002/2014GL059961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, https://doi.org/10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A., M. Williams, S. Dean, and M. Meylan, 2014: Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509, 604607, https://doi.org/10.1038/nature13262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 4978, https://doi.org/10.5194/tc-13-49-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and J. A. Curry, 2010: Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl. Acad. Sci. USA, 107, 14 98714 992, https://doi.org/10.1073/pnas.1003336107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., P. R. Gent, and S. Solomon, 2013: Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 51055110, https://doi.org/10.1002/jgrd.50443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Chung, and H. Teng, 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. T. Chung, M. M. Holland, A. DuVivier, L. Thompson, D. Yang, and C. M. Bitz, 2019: Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun., 10, 14, https://doi.org/10.1038/s41467-018-07865-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, https://doi.org/10.1002/grl.50578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, J. O., P. R. Holland, A. Orr, G. J. Marshall, and T. Phillips, 2017: The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett., 44, 62006208, https://doi.org/10.1002/2017GL073414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., and M. H. England, 2019: Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments. Geophys. Res. Lett., 46, 68486858, https://doi.org/10.1029/2019GL082671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., and Coauthors, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, L. A., and Coauthors, 2020: Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47, e2019GL086729, https://doi.org/10.1029/2019GL086729.

  • Rosenblum, E., and I. Eisenman, 2017: Sea ice trends in climate models only accurate in runs with biased global warming. J. Climate, 30, 62656278, https://doi.org/10.1175/JCLI-D-16-0455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, E., F. A. Haumann, and M. N. Raphael, 2018: Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere, 12, 11031119, https://doi.org/10.5194/tc-12-1103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and C. Deser, 2018: Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling observed and modeled trends. Climate Dyn., 50, 45994618, https://doi.org/10.1007/s00382-017-3893-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeter, S., W. Hobbs, and N. L. Bindoff, 2017: Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models. Cryosphere, 11, 789803, https://doi.org/10.5194/tc-11-789-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, https://doi.org/10.1029/2010GL044301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., C. M. Bitz, and K. C. Armour, 2017: Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett., 44, 90089019, https://doi.org/10.1002/2017GL074691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2007: Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Climate, 20, 25152529, https://doi.org/10.1175/JCLI4136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2014: Modeling the impact of wind intensification on Antarctic sea ice volume. J. Climate, 27, 202214, https://doi.org/10.1175/JCLI-D-12-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, and X. Yang, 2019: Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Climate Change, 9, 5965, https://doi.org/10.1038/s41558-018-0350-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., C, Deser, and L. Sun, 2020: Is there a tropical response to recent observed southern ocean cooling? Geophys. Res. Lett., 47, e2020GL091235, https://doi.org/10.1029/2020GL091235.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1050 0 0
Full Text Views 5894 2020 142
PDF Downloads 4189 1298 72