Multidecadal Changes in Southern Ocean Ventilation since the 1960s Driven by Wind and Buoyancy Forcing

Lavinia Patara GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Lavinia Patara in
Current site
Google Scholar
PubMed
Close
,
Claus W. Böning GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Claus W. Böning in
Current site
Google Scholar
PubMed
Close
, and
Toste Tanhua GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Toste Tanhua in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0947.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lavinia Patara, lpatara@geomar.de

Abstract

Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0947.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lavinia Patara, lpatara@geomar.de

Supplementary Materials

    • Supplemental Materials (ZIP 5.11 MB)
Save
  • Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 357365, https://doi.org/10.1002/2015GL066238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballarotta, M., S. Drijfhout, T. Kuhlbrodt, and K. Döös, 2013: The residual circulation of the Southern Ocean: Which spatio-temporal scales are needed? Ocean Modell., 64, 4655, https://doi.org/10.1016/j.ocemod.2013.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, H. T., and N. L. Bindoff, 2003: Comparison of observed temperature and salinity changes in the Indo-Pacific with results from the coupled climate model HadCM3: Processes and mechanisms. J. Climate, 16, 156166, https://doi.org/10.1175/1520-0442(2003)016<0156:COOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J.-B. Sallee, Z. Wang, A. J. S. Meijers, N. Bruneau, T. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, https://doi.org/10.1002/jgrd.50153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W., and T. Peng, 1974: Gas exchange rates between air and sea. Tellus, 26, 2135, https://doi.org/10.3402/tellusa.v26i1-2.9733.

  • Bullister, J. L., 2015: Atmospheric Histories (1765-2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O. NDP-095(2015), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, accessed 7 March 2018, https://www.nodc.noaa.gov/ocads/oceans/CFC_ATM_Hist2015.html.

  • Carter, B. R., and Coauthors, 2019: Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochem. Cycles, 33, 597617, https://doi.org/10.1029/2018GB006154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, https://doi.org/10.1175/2011JCLI3858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVries, T., M. Holzer, and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542, 215218, https://doi.org/10.1038/nature21068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., C. Langlais, J. P. Brook, and P. Spence, 2017: Regional impacts of the westerly winds on Southern Ocean mode and intermediate water subduction. J. Phys. Oceanogr., 47, 25212530, https://doi.org/10.1175/JPO-D-17-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation sensitivity during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, R. A., 2011: Observations of CFCs and SF6 as ocean tracers. Annu. Rev. Mar. Sci., 3, 173195, https://doi.org/10.1146/annurev.marine.010908.163933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, and W. M. Krasting, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363, 11931199, https://doi.org/10.1126/science.aau5153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., and S. R. Rintoul, 2011: Subantarctic mode water: Distribution and circulation. Ocean Dyn., 61, 103126, https://doi.org/10.1007/s10236-010-0352-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, https://doi.org/10.1002/grl.50287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holte, J., L. D. Talley, J. Gilson, and D. Roemmich, 2017: An Argo mixed layer climatology and database. Geophys. Res. Lett., 44, 56185626, https://doi.org/10.1002/2017GL073426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2019: Summary for policymakers. Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., 36 pp., https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf.

  • Ito, T., and M. J. Follows, 2013: Air–sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the Southern Ocean. Global Biogeochem. Cycles, 27, 11291138, https://doi.org/10.1002/2013GB004682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. C., T. Ito, Y. Takano, and W. C. Hsu, 2014: Spatial and seasonal variability of the air–sea equilibration timescale of carbon dioxide. Global Biogeochem. Cycles, 28, 11631178, https://doi.org/10.1002/2014GB004813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32, 30203038, https://doi.org/10.1175/1520-0485(2002)032<3020:FOSHTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppler, L., and P. Landschützer, 2019: Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep., 9, 7384, https://doi.org/10.1038/s41598-019-43826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2015: Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, accessed 3 May 2018, https://www.glodap.info/index.php/merged-and-adjusted-data-product-v2-2019/.

  • Klocker, A., 2018: Opening the window to the Southern Ocean: The role of jet dynamics. Sci. Adv., 4, eaao4719, https://doi.org/10.1126/sciadv.aao4719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landschützer, P., and Coauthors, 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349, 12211224, https://doi.org/10.1126/science.aab2620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlais, C. E., A. Lenton, R. Matear, D. Monselesan, B. Legresy, E. Cougnon, and S. Rintoul, 2017: Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep., 7, 17076, https://doi.org/10.1038/s41598-017-17292-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, https://doi.org/10.1126/science.1136188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Madec, G., and the NEMO team, 2016: NEMO ocean engine. IPSL Note du Pôle de Modélisation 27, 386 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40, 427464.

  • Meijers, A. J. S., I. Cerovečki, B. A. King, and V. Tamsitt, 2019: A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett., 46, 13 15213 160, https://doi.org/10.1029/2019GL085280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. McC. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, https://doi.org/10.1175/JPO-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, A., and Coauthors, 2016: The Global Ocean Data Analysis Project version 2 (GLODAPv2)—An internally consistent data product for the world ocean. Earth Syst. Sci. Data, 8, 297323, https://doi.org/10.5194/essd-8-297-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2017: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model Dev., 10, 21692199, https://doi.org/10.5194/gmd-10-2169-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sallée, J. B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, https://doi.org/10.1038/ngeo1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, 2013: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18451862, https://doi.org/10.1002/jgrc.20157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., L. D. Talley, S. Xie, W. Liu, and S. T. Gille, 2020: Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Climate, 33, 10 00310 020, https://doi.org/10.1175/JCLI-D-19-0877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., and Coauthors, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, N. Gillett, and G. J. Marshall, 2015: Comparing trends in the southern annular mode and surface westerly jet. J. Climate, 28, 88408859, https://doi.org/10.1175/JCLI-D-15-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., and Coauthors, 2016: Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci., 8, 185215, https://doi.org/10.1146/annurev-marine-052915-100829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanhua, T., D. W. Waugh, and J. L. Bullister, 2013: Estimating changes in ocean ventilation from early 1990s CFC-12 and late 2000s SF6 measurements. Geophys. Res. Lett., 40, 927932, https://doi.org/10.1002/grl.50251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanhua, T., and Coauthors, 2017: Temporal changes in ventilation and the carbonate system in the Atlantic sector of the Southern Ocean. Deep-Sea Res. II, 138, 2638, https://doi.org/10.1016/j.dsr2.2016.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, Y. H., and M. Holzer, 2017: Decadal changes in Southern Ocean ventilation inferred from deconvolutions of repeat hydrographies. Geophys. Res. Lett., 44, 56555664, https://doi.org/10.1002/2017GL073788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A., G. Vallis, and M. Nikurashin, 2015: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci., 8, 861864, https://doi.org/10.1038/ngeo2538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the Southern Oceans. Science, 339, 568570, https://doi.org/10.1126/science.1225411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. M. Hogg, P. Spence, M. H. England, and T. W. N. Haine, 2019: Response of Southern Ocean ventilation to changes in midlatitude westerly winds. J. Climate, 32, 53455361, https://doi.org/10.1175/JCLI-D-19-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 546 0 0
Full Text Views 591 226 26
PDF Downloads 548 194 23