A Continuum Approach to Understanding Changes in the ENSO–Indian Monsoon Relationship

Justin Schulte Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Justin Schulte in
Current site
Google Scholar
PubMed
Close
,
Frederick Policelli NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Frederick Policelli in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Zaitchik Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin Zaitchik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is well documented that the relationship between the El Niño–Southern Oscillation (ENSO) and the Indian summer monsoon changes on interdecadal time scales, yet an explanation for the variations is still a subject of debate. Here, using a continuum framework based on one-point partial correlation maps, we show that the ENSO–Indian rainfall relationship is influenced by the gradient of sea surface temperature anomalies (SSTA) across the Niño-3 region. Based on this identified SSTA pattern, a simple trans-Niño-3 (TN3) index is created that explains up to 50% of all-India rainfall variability during the mid- to late monsoon season after the 1960s. It is also shown that the influence of the TN3 pattern on the relationship between common ENSO metrics and all-India rainfall is strongest during the August–September (AS) monsoon subseason and weakest during the June–July subseason. The TN3 pattern accounts for up to 80% of the change and sign reversal in the AS Niño-1+2–all-India rainfall relationship in recent decades. The 1940s coincides with the intensification of the TN3 pattern and its influence. As the TN3 index is nearly orthogonal to the Niño-3 index, and both are strongly correlated with all-India rainfall, the strengthening TN3 influence must be systematically associated with the weakening Niño-3–all-India relationship in recent decades. This work supports arguments that recent changes in the ENSO–Indian rainfall relationship are not solely related to noise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Schulte, jschulte972@gmail.com

Abstract

It is well documented that the relationship between the El Niño–Southern Oscillation (ENSO) and the Indian summer monsoon changes on interdecadal time scales, yet an explanation for the variations is still a subject of debate. Here, using a continuum framework based on one-point partial correlation maps, we show that the ENSO–Indian rainfall relationship is influenced by the gradient of sea surface temperature anomalies (SSTA) across the Niño-3 region. Based on this identified SSTA pattern, a simple trans-Niño-3 (TN3) index is created that explains up to 50% of all-India rainfall variability during the mid- to late monsoon season after the 1960s. It is also shown that the influence of the TN3 pattern on the relationship between common ENSO metrics and all-India rainfall is strongest during the August–September (AS) monsoon subseason and weakest during the June–July subseason. The TN3 pattern accounts for up to 80% of the change and sign reversal in the AS Niño-1+2–all-India rainfall relationship in recent decades. The 1940s coincides with the intensification of the TN3 pattern and its influence. As the TN3 index is nearly orthogonal to the Niño-3 index, and both are strongly correlated with all-India rainfall, the strengthening TN3 influence must be systematically associated with the weakening Niño-3–all-India relationship in recent decades. This work supports arguments that recent changes in the ENSO–Indian rainfall relationship are not solely related to noise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Schulte, jschulte972@gmail.com
Save
  • An, S.-I., 2004: Interdecadal changes in the El Niño–La Niña symmetry. Geophys. Res. Lett., 31, L23210, https://doi.org/10.1029/2004GL021699.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., 2009: A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97, 2940, https://doi.org/10.1007/s00704-008-0071-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., Y. G. Ham, J. S. Kug, F. F. Jin, and I. S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18, 26172627, https://doi.org/10.1175/JCLI3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata 2001: Impact on the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cash, B. A., and Coauthors, 2017: Sampling variability and the changing ENSO–monsoon relationship. Climate Dyn., 48, 40714079, https://doi.org/10.1007/s00382-016-3320-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. J., J. H. He, and Z. W. Wu, 2013: New ocean atmosphere coupling indices for El Niño (in Chinese). Chin. J. Atmos. Sci., 37, 815828.

    • Search Google Scholar
    • Export Citation
  • Chen, W., B. Dong, and R. Lu, 2010: Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. J. Geophys. Res., 115, D17109, https://doi.org/10.1029/2009JD013596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, F., X. Dong, X. Fang, F. Xue, F. Zheng, and J. Zhu, 2017: Revisiting the relationship between the south Asian summer monsoon drought and El Niño warming pattern. Atmos. Sci. Lett., 18, 175182, https://doi.org/10.1002/asl.740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, https://doi.org/10.1175/JAS3536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., N. Schneider, and T. Barnett, 200l: Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: Signal or noise? J. Climate, 14, 24862492, https://doi.org/10.1175/1520-0442(2001)014<2486:LFMOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., M. L’Heureux, Z. Z. Hu, and H. M. Zhang, 2016: Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett., 43, 91659172, https://doi.org/10.1002/2016GL070888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, https://doi.org/10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kestin, T. A., D. J. Karoly, J.-I. Yano, and N. A. Rayner, 1998: Time–frequency variability of ENSO and stochastic simulations. J. Climate, 11, 22582272, https://doi.org/10.1175/1520-0442(1998)011<2258:TFVOEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20, 42554266, https://doi.org/10.1175/JCLI4254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135, 569579, https://doi.org/10.1002/qj.406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, https://doi.org/10.1126/science.1131152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1994: All India monthly and seasonal rainfall series, 1871–1993. Theor. Appl. Climatol., 49, 217224, https://doi.org/10.1007/BF00867461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

  • Santoso, A., S. McGregor, F.-F. Jin, W. Cai, M. H. England, S.-I. An, M. J. McPhaden, and E. Guilyardi, 2013: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 504, 126130, https://doi.org/10.1038/nature12683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., 2016: Cumulative areawise testing in wavelet analysis and its application to geophysical time series. Nonlinear Processes Geophys., 23, 4557, https://doi.org/10.5194/npg-23-45-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., 2019: Statistical hypothesis testing in wavelet analysis: Theoretical developments and applications to Indian rainfall. Nonlinear Processes Geophys., 26, 91108, https://doi.org/10.5194/npg-26-91-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., and S. Lee, 2019: Long Island Sound temperature variability and its associations with the ridge–trough dipole and tropical modes of sea surface temperature variability. Ocean Sci., 15, 161178, https://doi.org/10.5194/os-15-161-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., R. G. Najjar, and S. Lee, 2017a: Salinity and streamflow variability in the mid-Atlantic region of the United States and its relationship with large-scale atmospheric circulation patterns. J. Hydrol., 550, 6579, https://doi.org/10.1016/j.jhydrol.2017.03.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., N. Georgas, V. Saba, and P. Howell, 2017b: Meteorological aspects of the Eastern North American pattern with impacts on long island sound salinity. J. Mar. Sci. Eng., 5, 26, https://doi.org/10.3390/jmse5030026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., F. Policelli, and B. Zaitchik, 2020: A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship. Hydrol. Earth Syst. Sci., 24, 54735489, https://doi.org/10.5194/hess-24-5473-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., Z. Guan, and D. Jin, 2018: Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño–Southern Oscillation events during boreal summer. Int. J. Climatol., 38, 40664076, https://doi.org/10.1002/joc.5552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, A., and W. W. Hsieh, 2003: Nonlinear interdecadal changes of the El Niño-Southern Oscillation. Climate Dyn., 21, 719730, https://doi.org/10.1007/s00382-003-0361-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K. S., and A. Timmermann, 2018: Decadal monsoon–ENSO relationships reexamined. Geophys. Res. Lett., 45, 20142021, https://doi.org/10.1002/2017GL076912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J.-Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34, 13951403, https://doi.org/10.1007/s00376-017-6324-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 407 0 0
Full Text Views 386 106 8
PDF Downloads 414 95 10