Precipitation Diurnal Cycle over the Maritime Continent Modulated by the Climatological Annual Cycle

Jiahao Lu Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jiahao Lu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8649-8780
,
Tim Li International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
, and
Lu Wang Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lu Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modulation of the diurnal cycle (DC) of precipitation over the Maritime Continent (MC) by the background annual cycle mean state was studied for the period of 1998–2014 through observational analyses and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. The observational analyses reveal that there are statistically significant differences in the DC amplitude between boreal winter and summer. The amplitude of precipitation DC reduces by about 35% during boreal summer compared to boreal winter, especially over the MC major islands and adjacent oceans. A precipitation budget analysis indicates that the DC amplitude difference is primarily attributed to vertically integrated convergence of the mean moisture by diurnal winds. The relative roles of the background dynamic and thermodynamic states in causing the enhanced diurnal wind activity in boreal winter are further investigated through idealized WRF simulations. The results show that the seasonal mean background moisture condition is most critical in inducing the winter–summer difference of the precipitation DC over the MC, followed by atmospheric static stability (i.e., vertical temperature gradient) and circulation conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu

Abstract

The modulation of the diurnal cycle (DC) of precipitation over the Maritime Continent (MC) by the background annual cycle mean state was studied for the period of 1998–2014 through observational analyses and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. The observational analyses reveal that there are statistically significant differences in the DC amplitude between boreal winter and summer. The amplitude of precipitation DC reduces by about 35% during boreal summer compared to boreal winter, especially over the MC major islands and adjacent oceans. A precipitation budget analysis indicates that the DC amplitude difference is primarily attributed to vertically integrated convergence of the mean moisture by diurnal winds. The relative roles of the background dynamic and thermodynamic states in causing the enhanced diurnal wind activity in boreal winter are further investigated through idealized WRF simulations. The results show that the seasonal mean background moisture condition is most critical in inducing the winter–summer difference of the precipitation DC over the MC, followed by atmospheric static stability (i.e., vertical temperature gradient) and circulation conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu
Save
  • As-syakur, A. R., and Coauthors, 2019: Analysis of spatial and seasonal differences in the diurnal rainfall cycle over Sumatera revealed by 17-year TRMM 3B42 dataset. SOLA, 15, 216221, https://doi.org/10.2151/sola.2019-039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016: Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophys. Res. Lett., 43, 82698276, https://doi.org/10.1002/2016GL069602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, https://doi.org/10.1007/s00382-011-1146-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim, 2016: Scale interactions between the MJO and the western Maritime Continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., T. Li, M. Peng, W. Chen, and G. Chen, 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 46394660, https://doi.org/10.1175/JAS-D-13-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. McBride, and C. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, https://doi.org/10.1175/JCLI-D-14-00439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and C. A. Smith, 1998: Diurnal and semidiurnal variations of the surface wind field over the tropical Pacific Ocean. J. Climate, 11, 17301748, https://doi.org/10.1175/1520-0442(1998)011<1730:DASVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2015: Thermally driven diurnally periodic wind signals off the east coast of China. J. Atmos. Sci., 72, 28062821, https://doi.org/10.1175/JAS-D-14-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 20652082, https://doi.org/10.1175/JAS-D-17-0397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., B. Khouider, and A. J. Majda, 2011: Simple multicloud models for the diurnal cycle of tropical precipitation. Part I: Formulation and the case of the tropical oceans. J. Atmos. Sci., 68, 21692190, https://doi.org/10.1175/2011JAS3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M., and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 38823887, https://doi.org/10.1175/1520-0442(2001)014<3882:SCAPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98, 16 62316 637, https://doi.org/10.1029/93JD00525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, https://doi.org/10.1175/2010JCLI3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C., and C. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time and space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, https://doi.org/10.1175/JCLI3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Climate, 21, 28522868, https://doi.org/10.1175/2007JCLI1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, and M. Morrissey, 1994: An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev., 122, 22962311, https://doi.org/10.1175/1520-0493(1994)122<2296:AEOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., and T. Li, 2018: Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Climate Dyn., 51, 14651483, https://doi.org/10.1007/s00382-017-3965-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, https://doi.org/10.1175/2007JCLI2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, https://doi.org/10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., and T. Nitta, 2001: Diurnal variations of tropical convection observed during the TOGA-COARE. J. Meteor. Soc. Japan, 79, 815830, https://doi.org/10.2151/jmsj.79.815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical Orthogonal Functions and Statistical Weather Prediction. Statistical Forecasting Project Scientific Rep. 1, Massachusetts Institute of Technology, 49 pp.

  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., T. Li, and L. Wang, 2019: Precipitation diurnal cycle over the Maritime Continent modulated by the MJO. Climate Dyn., 53, 64896501, https://doi.org/10.1007/s00382-019-04941-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and J. M. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, https://doi.org/10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2015: Propagation of the Madden–Julian Oscillation and scale interaction with the diurnal cycle in a high-resolution GCM. Climate Dyn., 45, 29012918, https://doi.org/10.1007/s00382-015-2513-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J. H., A. W. Robertson, and V. Moron, 2010: Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmos. Sci., 67, 35093524, https://doi.org/10.1175/2010JAS3348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, 296 pp.

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2013: Influence of ENSO on the diurnal cycle of rainfall over the Maritime Continent and Australia. J. Climate, 26, 13041321, https://doi.org/10.1175/JCLI-D-12-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2017: The diurnal cycle of tropical cloudiness and rainfall associated with the Madden–Julian oscillation. J. Climate, 30, 39994020, https://doi.org/10.1175/JCLI-D-16-0788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., S. W. Powell, J. Dias, and G. N. Kiladis, 2018: The diurnal variability of precipitating cloud populations during DYNAMO. J. Atmos. Sci., 75, 13071326, https://doi.org/10.1175/JAS-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakurai, N., and Coauthors, 2005: Diurnal cycle of cloud system migration over Sumatera Island. J. Meteor. Soc. Japan, 83, 835850, https://doi.org/10.2151/jmsj.83.835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the Maritime Continent region. Meteor. Atmos. Phys., 51, 7399, https://doi.org/10.1007/BF01080881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655, https://doi.org/10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, C., T. Koh, J. C. Lo, and B. C. Bhatt, 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 46624675, https://doi.org/10.1175/2011JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, https://doi.org/10.1029/2003JD004117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18, https://www.ecmwf.int/publications/newsletters/pdf/115_rev.pdf.

  • Vincent, C. L., T. P. Lane, and M. C. Wheeler, 2016: A local index of Maritime Continent intraseasonal variability based on rain rates over the land and sea. Geophys. Res. Lett., 43, 93069314, https://doi.org/10.1002/2016GL069987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X.-S. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941955, https://doi.org/10.1007/s00382-010-0877-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, and L. Chen, 2019: Modulation of the Madden–Julian Oscillation on the energetics of wintertime synoptic-scale disturbances. Climate Dyn., 52, 48614871, https://doi.org/10.1007/s00382-018-4447-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worku, L. Y., A. Mekonnen, and C. J. Schreck, 2019: Diurnal cycle of rainfall and convection over the Maritime Continent using TRMM and ISCCP. Int. J. Climatol., 39, 51915200, https://doi.org/10.1002/joc.6121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, J. Hamada, M. D. Yamanaka, and F. Kimura, 2009: Why a large amount of rain falls over the sea in the vicinity of western Sumatra Island during nighttime. J. Appl. Meteor. Climatol., 48, 13451361, https://doi.org/10.1175/2009JAMC2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, A., K. Yasunaga, and H. Masunaga, 2017: Relationship between the direction of diurnal rainfall migration and the ambient wind over the southern Sumatra Island. Earth Space Sci., 4, 117127, https://doi.org/10.1002/2016EA000181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, https://doi.org/10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Y. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111, D17104, https://doi.org/10.1029/2006JD007243.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 420 0 0
Full Text Views 651 284 20
PDF Downloads 589 214 12