• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, https://doi.org/10.1029/2004GL021791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, https://doi.org/10.1002/2013GL058504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Norris, J. D. Neelin, J. Lu, L. R. Leung, and K. Sakaguchi, 2019: Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J. Atmos. Sci., 76, 497516, https://doi.org/10.1175/JAS-D-18-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2006: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., N. J. White, R. Coleman, K. Lambeck, and J. X. Mitrovica, 2004: Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Climate, 17, 26092625, https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., T. Delcroix, D. X. Zhang, M. McPhaden, and J. Leloup, 2009: Observed freshening and warming of the western Pacific warm pool. Climate Dyn., 33, 565589, https://doi.org/10.1007/s00382-009-0526-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, 826829, https://doi.org/10.1038/nature02206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine- f extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 152774152778, https://doi.org/10.1073/pnas.0506042102.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. G. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and R. Y. Lu, 2013: Interdecadal enhancement of the Walker circulation over the tropical Pacific in the late 1990s. Adv. Atmos. Sci., 30, 247262, https://doi.org/10.1007/s00376-012-2069-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and Y. H. Zhang, 2015: Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J. Climate, 28, 695713, https://doi.org/10.1175/JCLI-D-14-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. H. Zhang, M. Feng, T. Wang, N. Zhang, and S. Wijffels, 2015: Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci. Rep., 5, 16050, https://doi.org/10.1038/srep16050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. H. Zhang, and J. C. Shi, 2019: Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci., 62, 771782, https://doi.org/10.1007/s11430-018-9276-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., and et al. , 2016: Greenland freshwater pathways in the sub-Arctic seas from model experiments with passive tracers. J. Geophys. Res. Oceans, 121, 877907, https://doi.org/10.1002/2015JC011290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, https://doi.org/10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and et al. , 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, https://doi.org/10.1038/nclimate2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. F. Giulivi, 2008: Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography, 21, 2029, https://doi.org/10.5670/oceanog.2008.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., K. Ando, I. Ueki, K. Mizuno, and S. Hosoda, 2013: Upper-ocean salinity variability in the tropical Pacific: Case study for quasi-decadal shift during the 2000s using TRITON buoys and Argo floats. J. Climate, 26, 81268138, https://doi.org/10.1175/JCLI-D-12-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, https://doi.org/10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, https://doi.org/10.1007/s10872-009-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S. N., and A. V. Fedorov, 2019: Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Climate Change, 9, 747751, https://doi.org/10.1038/s41558-019-0566-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., S. P. Xie, K. M. Hu, G. Huang, and R. H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155170, https://doi.org/10.1007/s10872-006-0041-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. A., and et al. , 2014: Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Climate Change, 4, 292299, https://doi.org/10.1038/nclimate2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lago, V., S. E. Wijffels, P. J. Durack, J. A. Church, N. L. Bindoff, and S. J. Marsland, 2016: Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes. J. Climate, 29, 55755588, https://doi.org/10.1175/JCLI-D-15-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. C. Raible, D. Hofer, and T. F. Stocker, 2012: The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model. Climate Dyn., 39, 347363, https://doi.org/10.1007/s00382-011-1199-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, https://doi.org/10.1038/nclimate1840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Liang, R. M. Ponte, N. Vinogradova, and O. Wang, 2019: Vertical redistribution of salt and layered changes in global ocean salinity. Nat. Commun., 10, 3445, https://doi.org/10.1038/s41467-019-11436-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, https://doi.org/10.1175/JCLI-D-12-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., R. Chadwick, K.-H. Seo, C. Dong, G. Huang, G. R. Foltz, and J. H. Jiang, 2018: Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci., 46, 549580, https://doi.org/10.1146/annurev-earth-082517-010102.

    • Search Google Scholar
    • Export Citation
  • Ma, S. M., and T. J. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 30973118, https://doi.org/10.1175/JCLI-D-15-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the ‘global warming hiatus.’ Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. X. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. X. Hu, B. D. Santer, and S. P. Xie, 2016: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model large ensemble. J. Climate, 32, 10251045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nummelin, A., M. Ilicak, C. Li, and L. H. Smedsrud, 2016: Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans, 121, 617637, https://doi.org/10.1002/2015JC011156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. T. Vinogradova, 2016: An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett., 43, 70527058, https://doi.org/10.1002/2016GL069857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., R. Marsh, S. A. Josey, S. A. Good, C. L. Liu, and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, https://doi.org/10.1007/s00382-014-2131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., L. Corre, S. Cravatte, T. Delcroix, G. Reverdin, and A. Ribes, 2012: Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Climate, 25, 958977, https://doi.org/10.1175/JCLI-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S. P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2013: Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales. J. Geophys. Res. Oceans, 118, 31903201, https://doi.org/10.1002/jgrc.20200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2017: In search of fingerprints of the recent intensification of the ocean water cycle. J. Climate, 30, 55135528, https://doi.org/10.1175/JCLI-D-16-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., E. Guilyardi, R. T. Sutton, J. M. Gregory, and G. Madec, 2006: On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle. Climate Dyn., 27, 593611, https://doi.org/10.1007/s00382-006-0151-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., E. Guilyardi, R. T. Sutton, J. M. Gregory, and G. Madec, 2007: A new feedback on climate change from the hydrological cycle. Geophys. Res. Lett., 34, L08706, https://doi.org/10.1029/2007GL029275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., E. Guilyardi, G. Madec, S. Gualdi, and E. Scoccimarro, 2010: The role of mean ocean salinity in climate. Dyn. Atmos. Oceans, 49, 108123, https://doi.org/10.1016/j.dynatmoce.2009.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, https://doi.org/10.1007/s00382-011-1128-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Y. Kosaka, 2017: What caused the global surface warming hiatus of 1998–2013? Curr. Climate Change Rep., 3, 128140, https://doi.org/10.1007/s40641-017-0063-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Ann. N. Y. Acad. Sci., 1472, 7694, https://doi.org/10.1111/nyas.14354.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 444 444 81
Full Text Views 123 123 15
PDF Downloads 147 147 22

Sea Surface Salinity Change since 1950: Internal Variability versus Anthropogenic Forcing

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • | 3 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
  • | 4 Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
  • | 5 Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0331.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0331.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.32 MB)
Save