• Baldini, L. M., and Coauthors, 2016: Persistent northward North Atlantic tropical cyclone migration over the past fine centuries. Nat. Sci. Rep., 6, 37522, https://doi.org/10.1038%2FSREP37522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatia, K., G. Vecchi, H. Murakami, S. Underwood, and J. Kossin, 2018: Projected response of tropical cyclone intensity and intensification in a global climate model. J. Climate, 31, 82818303, https://doi.org/10.1175/JCLI-D-17-0898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity, 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloemendaal, N., I. D. Haigh, H. de Moel, S. Muis, R. J. Haarsma, and J. C. J. H. Aerts, 2020: Generation of a global synthetic tropical cyclone hazard dataset using STORM. Sci. Data, 7, 40, https://doi.org/10.1038/s41597-020-0381-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., C. Langlais, and A. S. Gupta, 2015: Projected sea surface temperature changes in the equatorial Pacific relative to the warm pool edge. Deep-Sea Res. II, 113, 4758, https://doi.org/10.1016/j.dsr2.2014.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chauvin, F., P. Romain, P. Palany, and A. Belmadani, 2019: Future changes in Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very high resolution. Climate Dyn., 54, 4758, https://doi.org/10.1007/S00382-019-05040-4.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., B. J. Soden, G. A. Vecchi, and B. P. Kirtman, 2013: The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Climate, 26, 40884095, https://doi.org/10.1175/JCLI-D-12-00342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and Coauthors, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7 (1), 126, https://doi.org/10.1214/aos/1176344552.

  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, https://doi.org/10.1038/nature07234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and A. H. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447458, https://doi.org/10.1002/jame.20032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundarajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347368, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., P. A. Stott, and B. D. Santer, 2008: Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett., 35, L09707, https://doi.org/10.1029/2008GL033670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increases in Atlantic hurricane activity. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and the 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, D., and Coauthors, 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo-global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2007: Statistical modeling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, https://doi.org/10.1111/j.1600-0870.2007.00240.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and E. Yonekura, 2013: North American tropical cyclone landfall and SST: A statistical model study. J. Climate, 26, 84228439, https://doi.org/10.1175/JCLI-D-12-00756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and K. Hureid, 2015: The frequency and duration of U.S. hurricane droughts. Geophys. Res. Lett., 42, 34823485, https://doi.org/10.1002/2015GL063652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and M. Tippett, 2017: Pacific hurricane landfalls on Mexico and SST. J. Appl. Meteor. Climatol., 56, 667676, https://doi.org/10.1175/JAMC-D-16-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., C.-Y. Lee, E. Nabizadeh, S. J. Camargo, D. Ma, and L. Y. Yeung, 2020: Effects of climate change on the movement of future landfalling Texas tropical cyclones. Nat. Commun., 11, 3319, https://doi.org/10.1038/s41467-020-17130-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust changes of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, M. K., and L. B. Mason, 2005: Synthetic tropical cyclone database. J. Waterw. Port Coastal Ocean Eng., 131, 181192, https://doi.org/10.1061/(ASCE)0733-950X(2005)131:4(181).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, https://doi.org/10.1175/JCLI-D-12-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II. Projections. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2015: Validating atmospheric reanalysis data using tropical cyclones as thermometers. Bull. Amer. Meteor. Soc., 96, 10891096, https://doi.org/10.1175/BAMS-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. M. Hall, T. Knutson, K. E. Kunkel, R. J. Trapp, D. E. Waliser, and M. F. Wehner, 2017: Extreme storms. Climate Science Special Report: Fourth Annual National Climate Assessment, Vol. I, D. J. Weubbles et al., Eds., U.S. Global Climate Change Research Program, 256–276.

    • Crossref
    • Export Citation
  • Kossin, J. P., K. R. Knapp, T. L. Olander, and C. S. Velden, 2020: Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA, 117, 11 97511 980, https://doi.org/10.1073/pnas.1920849117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197202, https://doi.org/10.1029/2007EO180001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, https://doi.org/10.1175/2009JCLI3034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., J. J. Shi, W. K. Tao, and K. M. Kim, 2016: What would happen to Superstorm Sandy under the influence of a substantially warmer Atlantic. Geophys. Res. Lett., 43, 802811, https://doi.org/10.1002/2015GL067050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An environmentally forced tropical cyclone hazard model. J. Adv. Earth Syst., 10, 223241, https://doi.org/10.1002/2017MS001186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, and S. K. Miller, 2020: Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun., 11, 49, https://doi.org/10.1038/s41467-019-13823-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoftakharI, H. R., G. Salvadori, A. AghaKouchak, B. F. Sanders, and R. A. Matthew, 2017: Compounding effects of sea level rise and fluvial flooding. Proc. Natl. Acad. Sci. USA, 114, 97859790, https://doi.org/10.1073/pnas.1620325114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, https://doi.org/10.1175/2010JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., E. Levin, T. L. Delworth, R. Gudgel, and P.-C. Hsu, 2018: Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362, 794799, https://doi.org/10.1126/science.aat6711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2020: Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA, 117, 10 70610 714, https://doi.org/10.1073/pnas.1922500117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci. USA, 103, 13 90513 910, https://doi.org/10.1073/pnas.0602861103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, https://doi.org/10.1007/s11069-013-0566-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, https://doi.org/10.1126/science.aaf6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experimental design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., B. H. Strauss, and C. E. Zervas, 2012: Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett., 7, 014032, https://doi.org/10.1088/1748-9326/7/1/014032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, https://doi.org/10.1038/nature06423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746, https://doi.org/10.1175/2010JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swansom, and B. J. Soden, 2008: Whither hurricane activity. Science, 322, 687689, https://doi.org/10.1126/science.1164396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivity to CO2 doubling: Roles of atmospheric resolution, synoptic variability, and background climate changes. Climate Dyn., 53, 59996033, https://doi.org/10.1007/s00382-019-04913-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., P. F. Skerlj, and L. A. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126, 12221237, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, https://doi.org/10.1175/JCLI-D-12-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Liu, S.-K. Lee, and R. Atlas, 2011: Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophys. Res. Lett., 38, L19702, https://doi.org/10.1029/2011GL049265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii, 2017: Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys. Res. Lett., 44, 99109917, https://doi.org/10.1002/2017GL075058.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 77
Full Text Views 40 40 17
PDF Downloads 54 54 24

U.S. Tropical Cyclone Activity in the 2030s Based on Projected Changes in Tropical Sea Surface Temperature

View More View Less
  • 1 NASA Goddard Institute for Space Studies, New York, New York
  • 2 NOAA/National Centers for Environmental Information, Madison, Wisconsin
  • 3 The Climate Service, Durham, North Carolina
© Get Permissions
Restricted access

Abstract

We use a statistical tropical cyclone (TC) model, the North Atlantic Stochastic Hurricane Model (NASHM), in combination with sea surface temperature (SST) projections from climate models, to estimate regional changes in U.S. TC activity into the 2030s. NASHM is trained on historical variations in TC characteristics with two SST indices: global–tropical mean SST and the difference between tropical North Atlantic Ocean (NA) SST and the rest of the global tropics, often referred to as “relative SST.” Testing confirms the model’s ability to reproduce historical U.S. TC activity as well as to make skillful predictions. When NASHM is driven by SST projections into the 2030s, overall NA annual TC counts increase, and the fractional increase is the greatest at the highest wind intensities. However, an eastward anomaly in mean TC tracks and an eastward shift in TC formation region result in a geographically varied signal in U.S. coastal activity. Florida’s Gulf Coast is projected to see significant increases in TC activity relative to the long-term historical mean, and these increases are fractionally greatest at the highest intensities. By contrast, the northwestern U.S. Gulf Coast and the U.S. East Coast will see little change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy M. Hall, timothy.m.hall@nasa.gov

Abstract

We use a statistical tropical cyclone (TC) model, the North Atlantic Stochastic Hurricane Model (NASHM), in combination with sea surface temperature (SST) projections from climate models, to estimate regional changes in U.S. TC activity into the 2030s. NASHM is trained on historical variations in TC characteristics with two SST indices: global–tropical mean SST and the difference between tropical North Atlantic Ocean (NA) SST and the rest of the global tropics, often referred to as “relative SST.” Testing confirms the model’s ability to reproduce historical U.S. TC activity as well as to make skillful predictions. When NASHM is driven by SST projections into the 2030s, overall NA annual TC counts increase, and the fractional increase is the greatest at the highest wind intensities. However, an eastward anomaly in mean TC tracks and an eastward shift in TC formation region result in a geographically varied signal in U.S. coastal activity. Florida’s Gulf Coast is projected to see significant increases in TC activity relative to the long-term historical mean, and these increases are fractionally greatest at the highest intensities. By contrast, the northwestern U.S. Gulf Coast and the U.S. East Coast will see little change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy M. Hall, timothy.m.hall@nasa.gov
Save