Human-Perceived Temperature Changes in South Korea and Their Association with Atmospheric Circulation Patterns

Hyun-Ju Lee Climate Analytics Department, APEC Climate Center, Busan, South Korea

Search for other papers by Hyun-Ju Lee in
Current site
Google Scholar
PubMed
Close
,
Wonbae Jeon Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Wonbae Jeon in
Current site
Google Scholar
PubMed
Close
,
Woo-Seop Lee Climate Analytics Department, APEC Climate Center, Busan, South Korea

Search for other papers by Woo-Seop Lee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1677-1929
, and
Hwa Woon Lee Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Hwa Woon Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the spatiotemporal characteristics of human-perceived temperature (HPT) data, which describe the joint effects of temperature and humidity on the human body, and examines the related large-scale atmospheric circulation patterns for the summer season (July–August) in South Korea using trend and composite analyses. The increasing trend of HPT was stronger than that of the maximum, mean, and minimum temperatures during 1981–2018. There was an abrupt change in HPT between 1981–2009 and 2010–18, which is likely caused by the northward upper-level subtropical jet, strengthened downward motion, anomalous anticyclones around South Korea, and increased sea surface temperature over the western North Pacific Ocean, which are related to the enhancement and western expansion of the western North Pacific subtropical high (WNPSH). These results highlight the importance of the activity of the WNPSH in the variability of HPT in South Korea. When the western edge of the WNPSH is located in the northwest, a positive geopotential height anomaly at 500 hPa is centered over South Korea, which is associated with high temperatures and low relative humidity. The southwestern extension of the WNPSH modifies the wind circulation pattern and brings warm and moist air from the West (Yellow) Sea along the ridge line of the WNPSH. Eventually, it leads to extreme HPT, associated with high relative humidity and temperature over South Korea, particularly in the southern part of the country. Therefore, we concluded that monitoring and predicting the location of WNPSH and understanding the mechanism and factors influencing the movement of WNPSH under global warming are necessary for predicting and coping with extreme HPT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Woo-Seop Lee, wslee@apcc21.org

Abstract

This study investigates the spatiotemporal characteristics of human-perceived temperature (HPT) data, which describe the joint effects of temperature and humidity on the human body, and examines the related large-scale atmospheric circulation patterns for the summer season (July–August) in South Korea using trend and composite analyses. The increasing trend of HPT was stronger than that of the maximum, mean, and minimum temperatures during 1981–2018. There was an abrupt change in HPT between 1981–2009 and 2010–18, which is likely caused by the northward upper-level subtropical jet, strengthened downward motion, anomalous anticyclones around South Korea, and increased sea surface temperature over the western North Pacific Ocean, which are related to the enhancement and western expansion of the western North Pacific subtropical high (WNPSH). These results highlight the importance of the activity of the WNPSH in the variability of HPT in South Korea. When the western edge of the WNPSH is located in the northwest, a positive geopotential height anomaly at 500 hPa is centered over South Korea, which is associated with high temperatures and low relative humidity. The southwestern extension of the WNPSH modifies the wind circulation pattern and brings warm and moist air from the West (Yellow) Sea along the ridge line of the WNPSH. Eventually, it leads to extreme HPT, associated with high relative humidity and temperature over South Korea, particularly in the southern part of the country. Therefore, we concluded that monitoring and predicting the location of WNPSH and understanding the mechanism and factors influencing the movement of WNPSH under global warming are necessary for predicting and coping with extreme HPT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Woo-Seop Lee, wslee@apcc21.org
Save
  • Black, M. T., and D. J. Karoly, 2016: Southern Australia’s warmest October on record: The role of ENSO and climate change [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 97, S118S121, https://doi.org/10.1175/BAMS-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzan, J. R., K. Oleson, and M. Huber, 2014: Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. Discuss., 7, 51975248, https://doi.org/10.5194/gmdd-7-5197-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, R. Lu, and C. Wang, 2019: Causes of the extreme hot midsummer in central and South China during 2017: Role of the western tropical Pacific warming. Adv. Atmos. Sci., 36, 465478, https://doi.org/10.1007/s00376-018-8177-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and Coauthors, 2016: Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies. Adv. Atmos. Sci., 33 (1), 19, https://doi.org/10.1007/s00376-015-5056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J.-W., H.-D. Kim, and B. Wang, 2019: Interdecadal variation of Changma (Korean summer monsoon rainy season) retreat date in Korea. Int. J. Climatol., 40, 13481360, https://doi.org/10.1002/joc.6272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, W., and K. Kim, 2019: Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Sci. Rep., 9, 7865, https://doi.org/10.1038/s41598-019-44414-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., C.-H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffel, E. D., R. M. Horton, and A. de Sherbinin, 2018: Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett., 13, 014001, https://doi.org/10.1088/1748-9326/aaa00e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. S. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, https://doi.org/10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., Y. Yuan, J. Zhang, and H. Gao, 2019: 2018: The hottest summer in China and possible causes. J. Meteor. Res., 33, 577592, https://doi.org/10.1007/s13351-019-8178-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126130, https://doi.org/10.1038/nclimate1682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., K. W. Oleson, and D. M. Lawrence, 2012: Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett., 39, L03705, https://doi.org/10.1029/2011GL050576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., S. Tett, J. Wang, and G. Hegerl, 2017: Summer heat waves over eastern China: Dynamical processes and trend attribution. Environ. Res. Lett., 12, 024015, https://doi.org/10.1088/1748-9326/aa5ba3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghatak, D., B. Zaitchik, C. Hain, and M. Anderson, 2017: The role of local heating in the 2015 Indian heat wave. Sci. Rep., 7, 7707, https://doi.org/10.1038/s41598-017-07956-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and G. Faure, 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, region. Wea. Forecasting, 23, 313335, https://doi.org/10.1175/2007WAF2006055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, W. N., H. B. Hu, X. J. Ren, and X.-Q. Yang, 2019: Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Climate Dyn., 53, 33253344, https://doi.org/10.1007/s00382-019-04705-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., J.-H. Yeo, Y.-W. Seo, E.-S. Chung, J.-Y. Moon, X. Feng, Y.-W. Lee, and C.-H. Ho, 2020: What caused the extraordinarily hot 2018 summer in Korea? J. Meteor. Soc. Japan, 98, 153167, https://doi.org/10.2151/jmsj.2020-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, B. Wu, and T. Zhou, 2018: Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol., 131, 681691, https://doi.org/10.1007/s00704-016-2001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, J. S., S. W. Yeh, and K. H. Seo, 2018: Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean Peninsula. J. Geophys. Res. Atmos., 123, 71497160, https://doi.org/10.1029/2018JD028360.

    • Search Google Scholar
    • Export Citation
  • Hope, P., G. Wang, E.-P. Lim, H. H. Hendon, and J. M. Arblaster, 2016: What caused the record-breaking heat across Australia in October 2015? Bull. Amer. Meteor. Soc., 97, S122S126, https://doi.org/10.1175/BAMS-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., M. Cai, S. Yang, and Z. Wu, 2018: Delineation of thermodynamic and dynamic responses to sea surface temperature forcing associated with El Niño. Climate Dyn., 51, 43294344, https://doi.org/10.1007/s00382-017-3711-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y. Y., H. J. Wang, K. Fan, and Y. Q. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift? Climate Dyn., 44, 20352047, https://doi.org/10.1007/s00382-014-2194-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., I. W. Jung, and D. H. Bae, 2011: The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. Int. J. Climatol., 31, 7286, https://doi.org/10.1002/joc.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., J. S. Pal, and E. A. B. Eltahir, 2017: Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv., 3, e1603322, https://doi.org/10.1126/sciadv.1603322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., N.-X. Thanh, Y.-H. Kim, and J.-B. Ahn, 2019: 2018 summer extreme temperatures in South Korea and their intensification under 3°C global warming. Environ. Res. Lett., 14, 094020, https://doi.org/10.1088/1748-9326/ab3b8f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • ISO, 1989: Hot environments—Estimation of the heat stress on working man, based on the WBGT index. International Organization for Standardization Doc. 7243, 9 pp., https://www.iso.org/standard/13895.html.

  • Jung, I. W., D. H. Bae, and G. Kim, 2011: Recent trends of mean and extreme precipitation in Korea. Int. J. Climatol., 31, 359370, https://doi.org/10.1002/joc.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 272 pp.

  • King, A. D., G. J. van Oldenborgh, D. J. Karoly, S. C. Lewis, and H. Cullen, 2015: Attribution of the record high central England temperature of 2014 to anthropogenic influences. Environ. Res. Lett., 10, 054002, https://doi.org/10.1088/1748-9326/10/5/054002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KMA, 2016: Annual report 2016. Korea Meteorological Administration Rep., 45 pp., https://www.kma.go.kr/download_01/Annual_Report_2016.pdf.

  • KMA, 2020: Climate information portal. Korea Meteorological Administration, accessed 1 April 2020, https://data.kma.go.kr/stcs/grnd/grndTaList.do?pgmNo=70.

  • Lee, H.-J., W.-S. Lee, and J. Yoo, 2016: Assessment of medium-range ensemble forecasts of heat waves. Atmos. Sci. Lett., 17, 1925, https://doi.org/10.1002/asl.593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-J., W.-S. Lee, J. A. Chun, and H. W. Lee, 2020: Probabilistic heat wave forecast based on a large-scale circulation pattern using the TIGGE data. Wea. Forecasting, 35, 367377, https://doi.org/10.1175/WAF-D-19-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-M., and S.-K. Min, 2018: Heat stress changes over East Asia under 1.5° and 2.0°C global warming targets. J. Climate, 31, 28192831, https://doi.org/10.1175/JCLI-D-17-0449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Y. D. Chen, T. Y. Gan, and N.-C. Lau, 2018: Elevated increases in human-perceived temperature under climate warming. Nat. Climate Change, 8, 4347, https://doi.org/10.1038/s41558-017-0036-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Yao, D. Luo, and L. Zhong, 2019: The linkage of the large-scale circulation pattern to a long-lived heatwave over mideastern China in 2018. Atmosphere, 10, 89, https://doi.org/10.3390/atmos10020089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., T. Zou, L. Li, Y. Deng, V. T. Sun, Q. Zhang, J. B. Layton, and S. Setoguchi, 2019: Impacts of the North Atlantic subtropical high on interannual variation of summertime heat stress over the conterminous United States. Climate Dyn., 53, 33453359, https://doi.org/10.1007/s00382-019-04708-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., 2013: Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China. Adv. Atmos. Sci., 30, 12241234, https://doi.org/10.1007/s00376-012-2105-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., C. Zhu, J. Su, S. Ma, and K. Xu, 2019: Record-breaking northward shift of the western North Pacific subtropical high in July 2018. J. Meteor. Soc. Japan, 97, 913925, https://doi.org/10.2151/jmsj.2019-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2015: Comparison between observed and model-simulated atmospheric circulation patterns associated with extreme temperature days over North America using CMIP5 historical simulations. J. Climate, 28, 20632079, https://doi.org/10.1175/JCLI-D-13-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and R. Chen, 2016: A review of recent studies on extreme heat in China. Atmos. Oceanic Sci. Lett., 9, 114121, https://doi.org/10.1080/16742834.2016.1133071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2019: Characteristics of summer heat stress in China during 1979–2014: Climatology and long-term trends. Climate Dyn., 53, 53755388, https://doi.org/10.1007/s00382-019-04871-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., N. Lau, W. Zhang, Q. Zhang, and Z. Liu, 2020: Summer high temperature extremes over China linked to the Pacific meridional mode. J. Climate, 33, 59055917, https://doi.org/10.1175/JCLI-D-19-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparameteric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Matthews, T. K., R. L. Wilby, and C. Murphy, 2017: Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA, 114, 38613866, https://doi.org/10.1073/pnas.1617526114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2020: Heat safety. National Weather Service, accessed 1 April 2020, https://www.weather.gov/grb/heat.

  • Oliver, E. C. J., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, https://doi.org/10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and P. B. Gibson, 2015: Increased risk of the 2014 Australian May heatwave due to anthropogenic activity [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96, S154S157, https://doi.org/10.1175/BAMS-D-15-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, W., and Coauthors, 2010: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biol., 16, 13171337, https://doi.org/10.1111/j.1365-2486.2009.02078.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, S. B. Ratna, M. Rajeevan, and T. Yamagata, 2016: Anatomy of Indian heat waves. Sci. Rep., 6, 24395, https://doi.org/10.1038/srep24395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X., X.-Q. Yang, and X. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 89298946, https://doi.org/10.1175/JCLI-D-12-00861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R., T. Smith, C. Liu, B. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and A. Sterl, 2017: Humid heat waves at different warming levels. Sci. Rep., 7, 7477, https://doi.org/10.1038/s41598-017-07536-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiermeier, Q., 2011: Increased flood risk linked to global warming. Nature, 470, 316, https://doi.org/10.1038/470316a.

  • Sherwood, S. C., 2018: How important is humidity in heat stress? J. Geophys. Res. Atmos., 123, 11 80811 811, https://doi.org/10.1029/2018JD028969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Q., and B. Dong, 2019: Recent decadal changes in heat waves over China: Drivers and mechanisms. J. Climate, 32, 42154234, https://doi.org/10.1175/JCLI-D-18-0479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C. H., P. H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, https://doi.org/10.1029/2006GL029204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, M. Hanel, A. G. L. Borthwick, Q. Duan, D. Ji, and H. Li, 2019: Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int., 128, 125136, https://doi.org/10.1016/j.envint.2019.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., and J. Wei, 2006: The westward, northward advance of the subtropical high over the west Pacific in summer (in Chinese). J. Appl. Meteor. Sci., 17, 513525.

    • Search Google Scholar
    • Export Citation
  • Tomczyk, A. M., and M. Owczarek, 2020: Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theor. Appl. Climatol., 139, 893905, https://doi.org/10.1007/s00704-019-02998-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B., and H. Vermont, 2010: Changes in the frequency of record temperatures in Australia, 1957–2009. Aust. Meteor. Oceanogr. J., 60, 113119, https://doi.org/10.22499/2.6002.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhe, P., F. Otto, K. Haustein, G. van Oldenborgh, A. King, D. Wallom, M. Allen, and H. Cullen, 2016: Comparison of methods: Attributing the 2014 record European temperatures to human influences. Geophys. Res. Lett., 43, 86858693, https://doi.org/10.1002/2016GL069568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., and Coauthors, 2017: Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrol. Earth Syst. Sci., 21, 897921, https://doi.org/10.5194/hess-21-897-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Tang, X. Sun, S. Wang, J. Wu, X. Dong, and J. Fang, 2017: Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. J. Geophys. Res. Atmos., 122, 10 67910 699, https://doi.org/10.1002/2017JD027180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. X., and H. C. Zuo, 2016: Effect of the East Asian westerly jet’s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 23952406, https://doi.org/10.1175/JCLI-D-15-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., Z. Zhong, Y. Sun, and J. Wang, 2019: Impacts of tropical cyclones on the meridional movement of the western Pacific subtropical high. Atmos. Sci. Lett., 20, e893, https://doi.org/10.1002/asl.893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., W. Li, Y. Deng, and S. Yang, 2019: Intraseasonal variation of the summer rainfall over the southeastern United States. Climate Dyn., 53, 1185, https://doi.org/10.1007/s00382-018-4415-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WHO, 2014: Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s. World Health Organization, 115 pp., https://apps.who.int/iris/handle/10665/134014.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464 pp.

  • Willett, K. M., and S. Sherwood, 2012: Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol., 32, 161177, https://doi.org/10.1002/joc.2257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2013: The global climate 2001–2010: A decade of climate extremes. World Meteorological Organization Rep. 1103, 119 pp.

  • WMO, 2020: Information and public health advice: Heat and health. Accessed 1 April 2020, https://www.who.int/globalchange/publications/heat-and-health/en/.

  • Wu, B., and T. J. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35, L13701, https://doi.org/10.1029/2008GL034584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 54065413, https://doi.org/10.1175/JCLI-D-14-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., K. Tu, Z. Yan, and Y. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol., 36, 12911298, https://doi.org/10.1002/joc.4424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, W. Yu, and S. Xu, 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 23492354, https://doi.org/10.1002/grl.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., Y. Du, and S. Yang, 2015: Zonal extension and retraction of the subtropical westerly jet stream and evolution of precipitation over East Asia and the western Pacific. J. Climate, 28, 67836798, https://doi.org/10.1175/JCLI-D-14-00649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, B. Kim, J. Park, J. Mao, J. Byon, R. Chen, and E. Kim, 2019: Large-scale circulation anomalies associated with extreme heat in South Korea and southern–central Japan. J. Climate, 32, 27472759, https://doi.org/10.1175/JCLI-D-18-0485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and S. Q. Sun, 2003: Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci., 20 (6), 921933, https://doi.org/10.1007/BF02915515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., Z. Xie, and J. Cao, 2017: A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer. J. Climate, 30, 33253341, https://doi.org/10.1175/JCLI-D-16-0434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S., Y. Won, J. Hong, K. Lee, M. Kwon, K. Seo, and Y. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 14631474, https://doi.org/10.1175/MWR-D-17-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., S.-W. Yeh, Y. Won, H. Jo, and W. Kim, 2017: Distinct mechanisms of Korean surface temperature variability during early and late summer. J. Geophys. Res. Atmos., 122, 61376151, https://doi.org/10.1002/2017JD026458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, D., D.-H. Cha, G. Lee, C. Park, M.-I. Lee, and K.-H. Min, 2018: Impacts of synoptic and local factors on heat wave events over southeastern region of Korea in 2015. J. Geophys. Res. Atmos., 123, 12 08112 096, https://doi.org/10.1029/2018JD029247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, D., and Coauthors, 2020: Recent changes in heatwave characteristics over Korea. Climate Dyn., 55, 16851696, https://doi.org/10.1007/s00382-020-05420-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, S.-J., I.-H. Oh, H.-Y. Seo, and E.-J. Kim, 2014: Measuring the burden of disease due to climate change and developing a forecast model in South Korea. Public Health, 128, 725733, https://doi.org/10.1016/j.puhe.2014.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Wu, 2015: Interdecadal variability of winter precipitation in Northwest China and its association with the North Atlantic SST change. Int. J. Climatol., 35, 11721179, https://doi.org/10.1002/joc.4047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, https://doi.org/10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 802 0 0
Full Text Views 706 245 4
PDF Downloads 657 218 5