The Double-Peaked El Niño and Its Physical Processes

Na-Yeon Shin Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Search for other papers by Na-Yeon Shin in
Current site
Google Scholar
PubMed
Close
,
Jong-Seong Kug Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Search for other papers by Jong-Seong Kug in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2251-2579
,
F. S. McCormack School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by F. S. McCormack in
Current site
Google Scholar
PubMed
Close
, and
Neil J. Holbrook Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Neil J. Holbrook in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently, El Niño diversity has been paid much attention because of its different global impacts. However, most studies have focused on a single warm peak in sea surface temperature anomalies (SSTAs), either in the central Pacific or the eastern Pacific Ocean. Here, we demonstrate from observational analyses that several recent El Niño events show double warm peaks in SSTA—called “double-peaked (DP) El Niño”—that have only been observed since 2000. The DP El Niño has two warm centers, which grow concurrently but separately, in both the central and eastern Pacific. In general, the atmospheric and oceanic patterns of the DP El Niño are similar to those of the warm-pool (WP) El Niño from the development phase, such that the central Pacific peak is developed by the zonal advective feedback and reduced wind speed anomalies. However, a distinctive difference exists in the eastern Pacific where the DP El Niño has a second SSTA peak. In addition, the DP El Niño shows more distinctive anomalous precipitation along the Pacific intertropical convergence zone (ITCZ) when compared with the WP El Niño. We demonstrate that the peculiar precipitation anomalies along the Pacific ITCZ play a critical role in enhancing the equatorial westerly wind stress anomalies, which help to develop the eastern SSTA peak by deepening the thermocline in the eastern Pacific.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0402.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jong-Seong Kug, jskug1@gmail.com

Abstract

Recently, El Niño diversity has been paid much attention because of its different global impacts. However, most studies have focused on a single warm peak in sea surface temperature anomalies (SSTAs), either in the central Pacific or the eastern Pacific Ocean. Here, we demonstrate from observational analyses that several recent El Niño events show double warm peaks in SSTA—called “double-peaked (DP) El Niño”—that have only been observed since 2000. The DP El Niño has two warm centers, which grow concurrently but separately, in both the central and eastern Pacific. In general, the atmospheric and oceanic patterns of the DP El Niño are similar to those of the warm-pool (WP) El Niño from the development phase, such that the central Pacific peak is developed by the zonal advective feedback and reduced wind speed anomalies. However, a distinctive difference exists in the eastern Pacific where the DP El Niño has a second SSTA peak. In addition, the DP El Niño shows more distinctive anomalous precipitation along the Pacific intertropical convergence zone (ITCZ) when compared with the WP El Niño. We demonstrate that the peculiar precipitation anomalies along the Pacific ITCZ play a critical role in enhancing the equatorial westerly wind stress anomalies, which help to develop the eastern SSTA peak by deepening the thermocline in the eastern Pacific.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0402.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jong-Seong Kug, jskug1@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 1.17 MB)
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation System for Atmosphere, Ocean, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/pdfpapers/70720.pdf.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., C. Langlais, and C. Maes, 2013: Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Climate Dyn., 42, 30613076, https://doi.org/10.1007/s00382-013-1931-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, E. D. Lorenzo, A. C. Subramanian, and A. J. Miller, 2019: Predictability of US West Coast ocean temperatures is not solely due to ENSO. Sci. Rep., 9, 10993, https://doi.org/10.1038/s41598-019-47400-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., J. Wang, and S. V. Gorder, 2000: A simple warm-pool displacement ENSO model. J. Phys. Oceanogr., 30, 16791691, https://doi.org/10.1175/1520-0485(2000)030<1679:ASWPDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, F. S., A. T. Wittenberg, J. N. Brown, S. J. Marsland, and N. J. Holbrook, 2017: Understanding the double peaked El Niño in coupled GCMs. Climate Dyn., 48, 20452063, https://doi.org/10.1007/s00382-016-3189-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383398, https://doi.org/10.1007/s00382-011-1157-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Improvement of ENSO simulation based on intermodel diversity. J. Climate, 28, 9981015, https://doi.org/10.1175/JCLI-D-14-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606632, https://doi.org/10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2017: The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 38163824, https://doi.org/10.1002/2017GL072908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, M. L’Heureux, M. J. McPhaden, and J.-Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, https://doi.org/10.1175/2010JCLI3373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5 Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Climate, 33, 13511379, https://doi.org/10.1175/JCLI-D-19-0395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, Y.-S., D. Kim, Y.-H. Kim, D.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2013: Simulation of two types of El Niño from different convective parameters. Asia-Pac. J. Atmos. Sci., 49, 193199, https://doi.org/10.1007/s13143-013-0020-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., C.-H. Ho, J.-H. Kim, D.-K. Lee, D.-H. Cha, and S.-W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 25342545, https://doi.org/10.1175/JCLI-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., S.-I. An, and F.-F. Jin, 2001: A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79, 110, https://doi.org/10.2151/jmsj.79.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., Y.-S. Jang, D.-H. Kim, Y.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2011: El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J. Geophys. Res., 116, D22112, https://doi.org/10.1029/2011jd016526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-S., and J.-S. Kug, 2019: Role of off-equatorial SST in El Niño teleconnection to East Asia during El Niño decaying spring. Climate Dyn., 52, 72937308, https://doi.org/10.1007/s00382-016-3473-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., H.-Y. Son, and J.-S. Kug, 2018: Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Climate Dyn., 51, 43454355, https://doi.org/10.1007/s00382-017-3779-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010a: Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467474, https://doi.org/10.1007/s13143-010-0027-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010b: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, https://doi.org/10.1175/2009JCLI3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005a: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005b: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791795, https://doi.org/10.1038/nclimate2775.

  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016: Contribution of the interdecadal Pacific oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41, 604613, https://doi.org/10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, https://doi.org/10.1126/science.274.5292.1486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., and A. C. Hirst, 2015: Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Climate Dyn., 46, 10751090, https://doi.org/10.1007/s00382-015-2633-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., A. V. Fedorov, and S. Hu, 2019: North Pacific temperature and precipitation response to El Niño-like equatorial heating: Sensitivity to forcing location. Climate Dyn., 53, 27312741, https://doi.org/10.1007/s00382-019-04655-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C.-H. Kim, 2014: Winter precipitation variability over Korean Peninsula associated with ENSO. Climate Dyn., 42, 31713186, https://doi.org/10.1007/s00382-013-2008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, H.-Y., J.-Y. Park, and J.-S. Kug, 2016: Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Climate Dyn., 46, 34193430, https://doi.org/10.1007/s00382-015-2776-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, and H. Wang, 2017: Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Sci. Rep., 7, 43735, https://doi.org/10.1038/srep43735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. H. Weisberg, 1994: On the “slow mode” mechanism in ENSO-related coupled ocean–atmosphere models. J. Climate, 7, 16571667, https://doi.org/10.1175/1520-0442(1994)007<1657:OTMMIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, https://doi.org/10.1175/2010JCLI3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J. Kug, F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, https://doi.org/10.1029/2012GL053305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 587 0 0
Full Text Views 484 185 15
PDF Downloads 562 144 17