• Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, B. I., Y.-D. Lenn, and C. Lique, 2018: Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice. J. Phys. Oceanogr., 48, 18491866, https://doi.org/10.1175/JPO-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., H. Sumata, B. Rabe, and U. Schauer, 2018: UDASH—Unified Database for Arctic and Subarctic Hydrography. Earth Syst. Sci. Data, 10, 11191138, https://doi.org/10.5194/essd-10-1119-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen, 2012: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69, 852863, https://doi.org/10.1093/icesjms/fss056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and Coauthors, 2014: Implications of Arctic sea ice decline for the Earth system. Ann. Rev. Environ. Rec., 39, 5789, https://doi.org/10.1146/annurev-environ-122012-094357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2019: Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett., 46, 22132221, https://doi.org/10.1029/2018GL081469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. Vecchi, X. Yang, A. Rosati, and R. Gudgel, 2019a: Regional Arctic sea-ice prediction: Potential versus operational seasonal forecast skill. Climate Dyn., 52, 27212743, https://doi.org/10.1007/s00382-018-4288-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., X. Yang, M. Winton, R. Msadek, M. Harrison, A. Rosati, and R. Gudgel, 2019b: The value of sustained ocean observations for sea ice predictions in the Barents Sea. J. Climate, 32, 70177035, https://doi.org/10.1175/JCLI-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Close, S., M. N. Houssais, and C. Herbaut, 2015: Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. J. Geophys. Res. Oceans, 120, 80778098, https://doi.org/10.1002/2015JC011187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and D. K. Hall, 2014: Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev. Climate Change, 5, 389409, https://doi.org/10.1002/wcc.277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz-García, R., V. Guemas, M. Chevallier, and F. Massonnet, 2019: An assessment of regional sea ice predictability in the Arctic Ocean. Climate Dyn., 53, 427440, https://doi.org/10.1007/s00382-018-4592-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gammelsrød, T., Ø. Leikvin, V. Lien, W. P. Budgell, H. Loeng, and W. Maslowski, 2009: Mass and heat transports in the NE Barents Sea: Observations and models. J. Mar. Syst., 75, 5669, https://doi.org/10.1016/j.jmarsys.2008.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 51955216, https://doi.org/10.1175/JCLI-D-14-00472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., and A. J. Plueddemann, 1995: Topographic control of thermohaline front structure in the Barents Sea polar front on the south flank of Spitsbergen Bank. J. Geophys. Res., 100, 45094524, https://doi.org/10.1029/94JC02427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and D. J. Cavalieri, 1989: A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas. J. Geophys. Res. Oceans, 94, 61456157, https://doi.org/10.1029/JC094iC05p06145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C. L., A. J. Plueddemann, and G. Gawarkiewicz, 1998: Water mass distribution and polar front structure in the western Barents Sea. J. Geophys. Res., 103, 29052917, https://doi.org/10.1029/97JC02790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbaut, C., M.-N. Houssais, S. Close, and A.-C. Blaizot, 2015: Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep-Sea Res. I, 106, 97115, https://doi.org/10.1016/j.dsr.2015.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ICES, 2019: Hydrographic database. International Council for the Exploration of the Sea, Copenhagen, accessed 25 February 2019, https://ocean.ices.dk/HydChem/HydChem.aspx.

  • Ingvaldsen, R. B., 2005: Width of the North Cape current and location of the polar front in the western Barents Sea. Geophys. Res. Lett., 32, L16603, https://doi.org/10.1029/2005GL023440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R. B., L. Asplin, and H. Loeng, 2004: The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Cont. Shelf Res., 24, 10151032, https://doi.org/10.1016/j.csr.2004.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V., V. Alexeev, N. V. Koldunov, I. Repina, A. B. Sandø, L. H. Smedsrud, and A. Smirnov, 2016: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback. J. Phys. Oceanogr., 46, 14371456, https://doi.org/10.1175/JPO-D-15-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, O., M.-K. Sung, K. Sato, Y.-K. Lim, S.-J. Kim, E.-H. Baek, J.-H. Jeong, and B.-M. Kim, 2017: How does the SST variability over the western North Atlantic Ocean control Arctic warming over the Barents–Kara Seas? Environ. Res. Lett., 12, 034021, https://doi.org/10.1088/1748-9326/AA5F3B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2000: Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere. Geophys. Res. Lett., 27, 37353738, https://doi.org/10.1029/2000GL011495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and L. Brodeau, 2014: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dyn., 42, 31013120, https://doi.org/10.1007/s00382-013-1821-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishfield, R. A., A. Proshutinsky, K. Tateyama, W. J. Williams, E. C. Carmack, F. A. McLaughlin, and M.-L. Timmermans, 2014: Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res. Oceans, 119, 12711305, https://doi.org/10.1002/2013JC008999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2009: Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J. Climate, 22, 24382457, https://doi.org/10.1175/2008JCLI2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., W. Maslowski, and S. W. Laxon, 2005: On large outflows of Arctic sea ice into the Barents Sea. Geophys. Res. Lett., 32, L22503, https://doi.org/10.1029/2005GL024485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., R. Zhang, and T. R. Knutson, 2017: On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline. Nat. Commun., 8, 14991, https://doi.org/10.1038/ncomms14991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, V. S., F. B. Vikebø, and Ø. Skagseth, 2013: One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun., 4, 1488, https://doi.org/10.1038/ncomms2505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, V. S., P. Schlichtholz, Ø. Skagseth, and F. B. Vikebø, 2017: Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J. Climate, 30, 803812, https://doi.org/10.1175/JCLI-D-16-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, S., and R. B. Ingvaldsen, 2012: Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep-Sea Res. I, 62, 7088, https://doi.org/10.1016/j.dsr.2011.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Climate Change, 8, 634639, https://doi.org/10.1038/s41558-018-0205-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeng, H., 1991: Features of the physical oceanographic conditions of the Barents Sea. Polar Res., 10, 518, https://doi.org/10.3402/polar.v10i1.6723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 15891600, https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Climate, 27, 88848901, https://doi.org/10.1175/JCLI-D-14-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., and B. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 59525955, https://doi.org/10.1029/JC075i030p05952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750, https://doi.org/10.1126/science.aag2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., L. H. Smedsrud, R. B. Ingvaldsen, and F. Nilsen, 2014: Loss of sea ice during winter north of Svalbard. Tellus, 66A, 23933, https://doi.org/10.3402/tellusa.v66.23933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, M. Årthun, R. B. Ingvaldsen, and L. H. Smedsrud, 2015: Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett., 42, 53645371, https://doi.org/10.1002/2015GL064359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, L. H. Smedsrud, and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. J. Climate, 31, 49174932, https://doi.org/10.1175/JCLI-D-17-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oziel, L., and Coauthors, 2017: Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. Oceans, 122, 51215139, https://doi.org/10.1002/2016JC012582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechura, J., and W. Walczowski, 2009: Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia, 51, 147164, https://doi.org/10.5697/oc.51-2.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291, https://doi.org/10.1126/science.aai8204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2011: Influence of oceanic heat variability on sea ice anomalies in the Nordic seas. Geophys. Res. Lett., 38, L05705, https://doi.org/10.1029/2010GL045894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2013: Observational evidence for oceanic forcing of atmospheric variability in the Nordic seas area. J. Climate, 26, 29572975, https://doi.org/10.1175/JCLI-D-11-00594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2014: Local wintertime tropospheric response to oceanic heat anomalies in the Nordic seas area. J. Climate, 27, 86868706, https://doi.org/10.1175/JCLI-D-13-00763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2018: Climate impacts and Arctic precursors of changing storm track activity in the Atlantic-Eurasian region. Sci. Rep., 8, 17786, https://doi.org/10.1038/s41598-018-35900-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2019: Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Sci. Rep., 9, 13692, https://doi.org/10.1038/s41598-019-49965-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., and M.-N. Houssais, 2011: Forcing of oceanic heat anomalies by air-sea interactions in the Nordic seas area. J. Geophys. Res., 116, C01006, https://doi.org/10.1029/2009JC005944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: Increasing fall–winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci., 1436, 3653, https://doi.org/10.1111/nyas.13856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604610, https://doi.org/10.1038/nclimate3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skagseth, Ø., 2008: Recirculation of Atlantic Water in the western Barents Sea. Geophys. Res. Lett., 35, L11606, https://doi.org/10.1029/2008GL033785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. Nilsen, and Ø. Skagseth, 2010: Heat in the Barents Sea: Transport, storage, and surface fluxes. Ocean Sci., 6, 219234, https://doi.org/10.5194/os-6-219-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, https://doi.org/10.1175/JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., T. Markus, L. Boisvert, J. Miller, and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, https://doi.org/10.1002/2013GL058951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic seas during the period 1864–1998. J. Climate, 14, 255267, https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Walczowski, W., A. Beszczynska-Möller, P. Wieczorek, M. Merchel, and A. Grynczel, 2017: Oceanographic observations in the Nordic Sea and Fram Strait in 2016 under the IO PAN long-term monitoring program AREX. Oceanologia, 59, 187194, https://doi.org/10.1016/j.oceano.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, https://doi.org/10.1029/2009GL037820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., A. R. Karspeck, and G. Danabasoglu, 2015: Predicted slowdown in the rate of Atlantic sea ice loss. Geophys. Res. Lett., 42, 10 70410 713, https://doi.org/10.1002/2015GL065364.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 542 233 0
Full Text Views 199 85 5
PDF Downloads 254 97 6

Relationships between Wintertime Sea Ice Cover in the Barents Sea and Ocean Temperature Anomalies in the Era of Satellite Observations

View More View Less
  • 1 Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Investigation of the predictability of sea ice cover in the Barents Sea is of paramount importance since sea ice changes in this part of the Arctic not only affect local marine ecosystems and human activities but may also influence weather and climate in northern midlatitudes. Here, observational data from the period 1981–2018 are used to identify statistical linkages of wintertime sea ice cover in the Barents Sea region to preceding sea surface temperature (SST) and Atlantic Water temperature anomalies in that region. We find that the ocean temperature anomalies formed by local air–sea interactions during the winter-to-spring season are a significant source of predictability for sea ice area (SIA) in the Barents Sea region the following winter. Optimal areas for constructing SST predictors of Barents Sea SIA and skill scores from retrospective statistical forecasts are shown to differ between the periods up to and since the onset of rapid sea ice decline in the region. In the EARLY period (1982–2003), springtime SSTs in the western Barents Sea predicted 44% of the variance of the following winter Barents Sea SIA. In the LATE period (2003–17), springtime SSTs in the southern Barents Sea predicted 70% of the variance of the following winter Barents Sea SIA. Regression analysis suggests that feedbacks from anomalous winds may be important for the predictability of wintertime sea ice cover in the Barents Sea region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pawel Schlichtholz, schlicht@iopan.gda.pl

Abstract

Investigation of the predictability of sea ice cover in the Barents Sea is of paramount importance since sea ice changes in this part of the Arctic not only affect local marine ecosystems and human activities but may also influence weather and climate in northern midlatitudes. Here, observational data from the period 1981–2018 are used to identify statistical linkages of wintertime sea ice cover in the Barents Sea region to preceding sea surface temperature (SST) and Atlantic Water temperature anomalies in that region. We find that the ocean temperature anomalies formed by local air–sea interactions during the winter-to-spring season are a significant source of predictability for sea ice area (SIA) in the Barents Sea region the following winter. Optimal areas for constructing SST predictors of Barents Sea SIA and skill scores from retrospective statistical forecasts are shown to differ between the periods up to and since the onset of rapid sea ice decline in the region. In the EARLY period (1982–2003), springtime SSTs in the western Barents Sea predicted 44% of the variance of the following winter Barents Sea SIA. In the LATE period (2003–17), springtime SSTs in the southern Barents Sea predicted 70% of the variance of the following winter Barents Sea SIA. Regression analysis suggests that feedbacks from anomalous winds may be important for the predictability of wintertime sea ice cover in the Barents Sea region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pawel Schlichtholz, schlicht@iopan.gda.pl
Save