• Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Ardilouze, C., L. Batté, M. Déqué, E. van Meijgaard, and B. van den Hurk, 2019: Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Climate Dyn., 52, 40114026, https://doi.org/10.1007/s00382-018-4358-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, J. W., G. A. Vecchi, and S. Bordoni, 2019: The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones. Climate Dyn., 53, 805824, https://doi.org/10.1007/s00382-019-04615-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and et al. , 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., C. W. Landsea, S. B. Goldenberg, R. J. Pasch, E. S. Blake, J. Schemm, and T. B. Kimberlain, 2014: The 2013 North Atlantic hurricane season: A climate perspective [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S86S90.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. G. Barnston, 2009: Experimental dynamical seasonal forecasts of tropical cyclone activity at IRI. Wea. Forecasting, 24, 472491, https://doi.org/10.1175/2008WAF2007099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, https://doi.org/10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 22062219, https://doi.org/10.1002/qj.2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2014: Comparing forecast skill. Mon. Wea. Rev., 142, 46584678, https://doi.org/10.1175/MWR-D-14-00045.1.

  • DelSole, T., and M. K. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615626, https://doi.org/10.1175/MWR-D-15-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and S. Manabe, 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 14471462, https://doi.org/10.1175/1520-0442(1989)002<1447:TIOSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and et al. , 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and et al. , 2020: SPEAR—The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., M. J. Fennessy, and L. Marx, 2003: Low skill in dynamical prediction of boreal summer climate: Grounds for looking beyond sea surface temperature. J. Climate, 16, 9951002, https://doi.org/10.1175/1520-0442(2003)016<0995:LSIDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 11113 127, https://doi.org/10.1029/2018JD029103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, 1, https://doi.org/10.3894/JAMES.2010.2.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, and T. DelSole, 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, https://doi.org/10.1029/2011GL049945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., S.-J. Lin, and C. Tu, 2016: High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Climate, 29, 42934314, https://doi.org/10.1175/JCLI-D-15-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., N. C. Johnson, G. A. Vecchi, B. Kirtman, A. T. Wittenberg, and S. Sturm, 2018: Precipitation sensitivity to local variations in tropical sea surface temperature. J. Climate, 31, 92259238, https://doi.org/10.1175/JCLI-D-18-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W.-C., C. M. Patricola, and P. Chang, 2019: The impact of climate model sea surface temperature biases on tropical cyclone simulations. Climate Dyn., 53, 173192, https://doi.org/10.1007/s00382-018-4577-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and et al. , 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and et al. , 2016: The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Climate, 29, 41214135, https://doi.org/10.1175/JCLI-D-15-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño–Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474, https://doi.org/10.1175/JCLI-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., and et al. , 2018: Potential for western US seasonal snowpack prediction. Proc. Natl. Acad. Sci. USA, 115, 11801185, https://doi.org/10.1073/pnas.1716760115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and et al. , 2018: Process-oriented diagnosis of tropical cyclones in high-resolution GCMs. J. Climate, 31, 16851702, https://doi.org/10.1175/JCLI-D-17-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, https://doi.org/10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, https://doi.org/10.1175/2010JCLI3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, https://doi.org/10.1175/JCLI-D-13-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, https://doi.org/10.1175/JCLI-D-14-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., G. Vecchi, R. Msadek, A. Wittenberg, T. Delworth, and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, https://doi.org/10.1175/JCLI-D-14-00590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., G. Vecchi, R. Msadek, H. Murakami, A. Wittenberg, and F. Zeng, 2016: Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic. J. Climate, 29, 23752394, https://doi.org/10.1175/JCLI-D-15-0468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., and R. L. Sriver, 2018: Tropical cyclone activity in the high-resolution community earth system model and the impact of ocean coupling. J. Adv. Model. Earth Syst., 10, 165186, https://doi.org/10.1002/2017MS001199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Wang, G. Zhang, M. S. Peng, S. G. Benjamin, and M. Zhao, 2018: Subseasonal variability of Rossby wave breaking and impacts on tropical cyclones during the North Atlantic warm season. J. Climate, 31, 96799695, https://doi.org/10.1175/JCLI-D-17-0880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, H. Murakami, R. Gudgel, and X. Yang, 2018: Towards dynamical seasonal forecast of extratropical transition in the North Atlantic. Geophys. Res. Lett., 45, 12 60212 609, https://doi.org/10.1029/2018GL079451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 23932409, https://doi.org/10.1007/s00382-012-1599-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and B. Huang, 2009: The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Climate Dyn., 32, 10151034, https://doi.org/10.1007/s00382-008-0407-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, https://doi.org/10.1175/JCLI-D-11-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2016: Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Climate, 29, 11791200, https://doi.org/10.1175/JCLI-D-15-0531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., B. A. Cash, K. I. Hodges, and J. L. Kinter, 2019: Seasonal forecasts of North Atlantic tropical cyclone activity in the North American multi-model ensemble. Climate Dyn., 53, 71697184, https://doi.org/10.1007/s00382-017-3670-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., Y. Kamae, S.-P. Xie, and K. Yoshida, 2019: Variability and predictability of North Atlantic hurricane frequency in a large ensemble of high-resolution atmospheric simulations. J. Climate, 32, 31533167, https://doi.org/10.1175/JCLI-D-18-0554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and et al. , 2014: An enhanced model of land water and energy for global hydrologic and earth-system studies. J. Hydrometeor., 15, 17391761, https://doi.org/10.1175/JHM-D-13-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, https://doi.org/10.1007/s00382-011-1223-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. Villarini, G. A. Vecchi, W. Zhang, and R. Gudgel, 2016: Statistical–dynamical seasonal forecast of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev., 144, 21012123, https://doi.org/10.1175/MWR-D-15-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., E. Levin, T. L. Delworth, R. Gudgel, and P.-C. Hsu, 2018: Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362, 794799, https://doi.org/10.1126/science.aat6711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and H. A. Dijkstra, 1995: Ocean–atmosphere interaction and the tropical climatology. Part I: The dangers of flux correction. J. Climate, 8, 13251342, https://doi.org/10.1175/1520-0442(1995)008<1325:OAIATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., A. T. Wittenberg, L. Cheng, G. P. Compo, and C. A. Smith, 2018: The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bull. Amer. Meteor. Soc., 99, S16S20, https://doi.org/10.1175/BAMS-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 53955416, https://doi.org/10.1175/JCLI-D-17-0678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, S., A. T. Wittenberg, S. M. Griffies, and F. Zeng, 2018a: Understanding the equatorial Pacific cold tongue time-mean heat budget. Part I: Diagnostic framework. J. Climate, 31, 99659985, https://doi.org/10.1175/JCLI-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, S., A. T. Wittenberg, S. M. Griffies, and F. Zeng, 2018b: Understanding the equatorial Pacific cold tongue time-mean heat budget. Part II: Evaluation of the GFDL-FLOR coupled GCM. J. Climate, 31, 998710 011, https://doi.org/10.1175/JCLI-D-18-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, https://doi.org/10.1175/JCLI-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and et al. , 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., J. Nakamura, and M. Ting, 2019: Mechanisms of seasonal soil moisture drought onset and termination in the southern Great Plains. J. Hydrometeor., 20, 751771, https://doi.org/10.1175/JHM-D-18-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shackley, S., J. Risbey, P. Stone, and B. Wynne, 1999: Adjusting to policy expectations in climate change modeling. Climatic Change, 43, 413454, https://doi.org/10.1023/A:1005474102591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. Sutton, and J. M. Slingo, 2007: El Niño in a coupled climate model: Sensitivity to changes in mean state induced by heat flux and wind stress corrections. J. Climate, 20, 22732298, https://doi.org/10.1175/JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125, 809818, https://doi.org/10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 45254545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., and et al. , 2016: The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. J. Climate, 29, 79918012, https://doi.org/10.1175/JCLI-D-16-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and G. Villarini, 2014: Next season’s hurricanes. Science, 343, 618619, https://doi.org/10.1126/science.1247759.

  • Vecchi, G. A., and et al. , 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666, https://doi.org/10.1256/qj.05.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2009: Impact of the Madden–Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett., 36, L15802, https://doi.org/10.1029/2009GL039089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212537, https://doi.org/10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and et al. , 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, https://doi.org/10.1029/2007GL030740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and et al. , 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and et al. , 2019: Moist static energy budget analysis of tropical cyclone intensification in high-resolution climate models. J. Climate, 32, 60716095, https://doi.org/10.1175/JCLI-D-18-0599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., and J. L. Anderson, 1998: Dynamical implications of prescribing part of a coupled system: Results from a low-order model. Nonlinear Processes Geophys., 5, 167179, https://doi.org/10.5194/npg-5-167-1998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., and et al. , 2018: Improved simulations of tropical Pacific annual-mean climate in the GFDL FLOR and HiFLOR coupled GCMs. J. Adv. Model. Earth Syst., 10, 31763220, https://doi.org/10.1029/2018MS001372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2018: Spring land surface and subsurface temperature anomalies and subsequent downstream late spring-summer droughts/floods in North America and East Asia. J. Geophys. Res. Atmos., 123, 50015019, https://doi.org/10.1029/2017JD028246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and et al. , 2015: Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Climate, 28, 35923611, https://doi.org/10.1175/JCLI-D-14-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2018: North Atlantic extratropical Rossby wave breaking during the warm season: Wave life cycle and role of diabatic heating. Mon. Wea. Rev., 146, 695712, https://doi.org/10.1175/MWR-D-17-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2019: North Atlantic Rossby wave breaking during the hurricane season: Association with tropical and extratropical variability. J. Climate, 32, 37773801, https://doi.org/10.1175/JCLI-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, https://doi.org/10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, M. S. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Murakami, R. Gudgel, and X. Yang, 2019: Dynamical seasonal prediction of tropical cyclone activity: Robust assessment of prediction skill and predictability. Geophys. Res. Lett., 46, 55065515, https://doi.org/10.1029/2019GL082529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Murakami, T. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion in a changing climate. Sci. Adv., 6, eaaz7610, https://doi.org/10.1126/sciadv.aaz7610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, https://doi.org/10.1175/JAS-D-11-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., M. Zhao, and D. Yang, 2019: Understand the direct effect of CO2 increase on tropical circulation and TC activity: Land surface warming versus direct radiative forcing. Geophys. Res. Lett., 46, 68596867, https://doi.org/10.1029/2019GL082865.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 213 213 60
Full Text Views 77 77 8
PDF Downloads 88 88 10

Dynamical Seasonal Predictions of Tropical Cyclone Activity: Roles of Sea Surface Temperature Errors and Atmosphere–Land Initialization

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 2 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey
  • | 3 University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Climate models often show errors in simulating and predicting tropical cyclone (TC) activity, but the sources of these errors are not well understood. This study proposes an evaluation framework and analyzes three sets of experiments conducted using a seasonal prediction model developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These experiments apply the nudging technique to the model integration and/or initialization to estimate possible improvements from nearly perfect model conditions. The results suggest that reducing sea surface temperature (SST) errors remains important for better predicting TC activity at long forecast leads—even in a flux-adjusted model with reduced climatological biases. Other error sources also contribute to biases in simulated TC activity, with notable manifestations on regional scales. A novel finding is that the coupling and initialization of the land and atmosphere components can affect seasonal TC prediction skill. Simulated year-to-year variations in June land conditions over North America show a significant lead correlation with the North Atlantic large-scale environment and TC activity. Improved land–atmosphere initialization appears to improve the Atlantic TC predictions initialized in some summer months. For short-lead predictions initialized in June, the potential skill improvements attributable to land–atmosphere initialization might be comparable to those achievable with perfect SST predictions. Overall, this study delineates the SST and non-oceanic error sources in predicting TC activity and highlights avenues for improving predictions. The nudging-based evaluation framework can be applied to other models and help improve predictions of other weather extremes.

Current affiliation: Citadel Americas, LLC, Chicago, Illinois.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gan Zhang, ganzhang@princeton.edu

Abstract

Climate models often show errors in simulating and predicting tropical cyclone (TC) activity, but the sources of these errors are not well understood. This study proposes an evaluation framework and analyzes three sets of experiments conducted using a seasonal prediction model developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These experiments apply the nudging technique to the model integration and/or initialization to estimate possible improvements from nearly perfect model conditions. The results suggest that reducing sea surface temperature (SST) errors remains important for better predicting TC activity at long forecast leads—even in a flux-adjusted model with reduced climatological biases. Other error sources also contribute to biases in simulated TC activity, with notable manifestations on regional scales. A novel finding is that the coupling and initialization of the land and atmosphere components can affect seasonal TC prediction skill. Simulated year-to-year variations in June land conditions over North America show a significant lead correlation with the North Atlantic large-scale environment and TC activity. Improved land–atmosphere initialization appears to improve the Atlantic TC predictions initialized in some summer months. For short-lead predictions initialized in June, the potential skill improvements attributable to land–atmosphere initialization might be comparable to those achievable with perfect SST predictions. Overall, this study delineates the SST and non-oceanic error sources in predicting TC activity and highlights avenues for improving predictions. The nudging-based evaluation framework can be applied to other models and help improve predictions of other weather extremes.

Current affiliation: Citadel Americas, LLC, Chicago, Illinois.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gan Zhang, ganzhang@princeton.edu
Save