• Boo, K.-O., W.-T. Kwon, and H.-J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett., 33, L01701, https://doi.org/10.1029/2005GL023378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chae, J.-H., M.-S. Park, and Y.-J. Choi, 2014: The WISE quality control system for integrated meteorological sensor data (in Korean). Atmosphere, 24, 445456, https://doi.org/10.14191/Atmos.2014.24.3.445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2014a: Dry tropical nights and wet extreme heat in Beijing: Atypical configurations between high temperature and humidity. Mon. Wea. Rev., 142, 17921802, https://doi.org/10.1175/MWR-D-13-00289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2014b: Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int. J. Climatol., 34, 19801989, https://doi.org/10.1002/joc.3815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmos. Oceanic Sci. Lett., 12, 238245, https://doi.org/10.1080/16742834.2019.1611170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, G., and Coauthors, 2009: Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol., 29, 19061925, https://doi.org/10.1002/joc.1979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., and W. Qian, 2011: Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci., 28, 322337, https://doi.org/10.1007/s00376-010-9236-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., and Z. Ke, 2015: Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor. Appl. Climatol., 122, 651665, https://doi.org/10.1007/s00704-014-1322-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., H. Endo, Y. Harada, and W. Ohfuchi, 2009: Relationship between high-impact weather events in Japan and propagation of Rossby waves along the Asian jet in July 2004. J. Meteor. Soc. Japan, 87, 139156, https://doi.org/10.2151/jmsj.87.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdenebat, E., and T. Sato, 2016: Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett., 17, 135140, https://doi.org/10.1002/asl.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126130, https://doi.org/10.1038/nclimate1682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, J.-S., S.-W. Yeh, and K.-H. Seo, 2018: Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean Peninsula. J. Geophys. Res. Atmos., 123, 71497160, https://doi.org/10.1029/2018JD028360.

    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road Pattern, and tropical SST anomalies. J. Climate, 29, 37533766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., H. Shiogama, M. Watanabe, M. Mori, M. Ishii, and M. Kimoto, 2014: The contribution of anthropogenic forcing to the Japanese heat waves of 2013 [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S52S54, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Imada, Y., M. Watanabe, H. Kawase, H. Shiogama, and M. Arai, 2019: The July 2018 high temperature event in Japan could not have happened without human-induced global warming. SOLA, 15A, 812, https://doi.org/10.2151/sola.15A-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, H.-S., Y. Choi, J.-H. Oh, and G.-H. Lim, 2002: Recent trends in temperature and precipitation over South Korea. Int. J. Climatol., 22, 13271337, https://doi.org/10.1002/joc.797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, E.-B., 2013: Evaluation of human-body effect and potential risk forecasting models by high temperature environment. Ph.D. thesis, Inje University, 230 pp.

  • Kim, M.-K., J.-S. Oh, C.-K. Park, S.-K. Min, K.-O. Boo, and J.-H. Kim, 2019: Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea. Int. J. Climatol., 39, 11661180, https://doi.org/10.1002/joc.5869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., and Coauthors, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyselý, J., and J. Kim, 2009: Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave? Climate Res., 38, 105116, https://doi.org/10.3354/cr00775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., P. D. Williams, and T. H. A. Frame, 2019: Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature, 572, 639642, https://doi.org/10.1038/s41586-019-1465-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., J.-T. Wang, S.-Z. Lin, and H.-R. Cho, 2004: The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location (in Chinese). Chin. J. Atmos. Sci., 28, 641665.

    • Search Google Scholar
    • Export Citation
  • Li, D., T. Zhou, L. Zou, W. Zhang, and L. Zhang, 2018: Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett., 45, 15411550, https://doi.org/10.1002/2017GL076753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2013: Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China. Adv. Atmos. Sci., 30, 12241234, https://doi.org/10.1007/s00376-012-2105-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., and R. Lu, 2016: Impact of summer rainfall over southern-central Europe on circumglobal teleconnection. Atmos. Sci. Lett., 17, 258262, https://doi.org/10.1002/asl.652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, https://doi.org/10.1029/2010GL042764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., and R.-D. Chen, 2016: A review of recent studies on extreme heat in China. Atmos. Oceanic Sci. Lett., 9, 114121, https://doi.org/10.1080/16742834.2016.1133071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., Y.-H. Kim, M.-K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S48S51, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Nakai, S., T. Itoh, and T. Morimoto, 1999: Deaths from heat-stroke in Japan: 1968–1994. Int. J. Biometeor., 43, 124127, https://doi.org/10.1007/s004840050127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, M., M. Matsueda, and M. Sugi, 2013: Future projections of heat waves around Japan simulated by CMIP3 and high-resolution Meteorological Research Institute atmospheric climate models. J. Geophys. Res. Atmos., 118, 30973109, https://doi.org/10.1002/jgrd.50260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C., and Y. Choi, 2012: Validation of quality control algorithms for temperature data of the Republic of Korea (in Korean). Atmosphere, 22, 299307, https://doi.org/10.14191/Atmos.2012.22.3.299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C.-K., and S. D. Schubert, 1997: On the nature of the 1994 East Asian summer drought. J. Climate, 10, 10561070, https://doi.org/10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-K., W.-S. Jung, and E.-B. Kim, 2008: A study on the influence of extreme heat on daily mortality (in Korean). J. Korean Soc. Atmos. Environ., 24, 523537, https://doi.org/10.5572/KOSAE.2008.24.5.523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y.-J., and J.-B. Ahn, 2014: Characteristics of atmospheric circulation over East Asia associated with summer blocking. J. Geophys. Res., 119, 726738, https://doi.org/10.1002/2013JD020688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J.-B., 2014: An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos. Oceanic Sci. Lett., 7, 286290, https://doi.org/10.3878/j.issn.1674-2834.13.0097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and O. Martius, 2019: Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells. Geophys. Res. Lett., 46, 10 10110 111, https://doi.org/10.1029/2019GL083745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneidereit, A., S. Schubert, P. Vargin, F. Lunkeit, X. Zhu, D. H. W. Peters, and K. Fraedrich, 2012: Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Wea. Rev., 140, 29672981, https://doi.org/10.1175/MWR-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., C. Lu, and X. Xu, 2011: Variability and trends of high temperature, high humidity, and sultry weather in the warm season in China during the period 1961–2004. J. Appl. Meteor. Climatol., 50, 127143, https://doi.org/10.1175/2010JAMC2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimpo, A., and Coauthors, 2019: Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan. SOLA, 15A, 1318, https://doi.org/10.2151/sola.15A-003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, P., and Y. Zhang, 2019: Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Oceanic Sci. Lett., 12, 254260, https://doi.org/10.1080/16742834.2019.1610326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, B.-J. Kim, J.-K. Park, J. Mao, J.-Y. Byon, R. Chen, and E.-B. Kim, 2019a: Large-scale circulation anomalies associated with extreme heat in South Korea and southern-central Japan. J. Climate, 32, 27472759, https://doi.org/10.1175/JCLI-D-18-0485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, J. Mao, and R. Chen, 2019b: Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmos. Oceanic Sci. Lett., 12, 231237, https://doi.org/10.1080/16742834.2019.1617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-J. Won, J.-S. Hong, K.-J. Lee, M. Kwon, K.-H. Seo, and Y.-G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 14631474, https://doi.org/10.1175/MWR-D-17-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 74987511, https://doi.org/10.1029/2018JD030170.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 311 72 0
Full Text Views 172 68 7
PDF Downloads 218 100 23

Comparison of the Circulation Anomalies Associated with Wet and Dry Extreme Heat in South Korea and Southern–Central Japan

View More View Less
  • 1 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China
  • | 3 Beijing Regional Climate Center, Beijing, China
  • | 4 National Institute of Meteorological Sciences, Korea Meteorological Administration, Jeju-do, South Korea
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study indicates a significant variation of humidity on extreme heat (EH) days over South Korea and southern–central Japan during the period 1979–2018. EH is therefore classified into three categories: type-A wet EH, type-B wet EH, and dry EH. Their statistical characteristics and formation mechanisms are investigated and compared. Our results suggest that the type-A wet EH is the most destructive, with the highest intensity, longest duration, and broadest spatial scale covering most of midlatitude East Asia. By contrast, type-B wet EH and dry EH are weaker, shorter, and mostly confined to northeast Asia. Despite these differences in characteristics, both types of wet EH are caused by the poleward advance of tropical warm and humid air masses as a result of the northward displacement of the Asian westerly jet. By contrast, dry EH is primarily induced by an increase in adiabatic heating and solar radiation resulting from anomalous subsidence. The three types of EH are associated with distinct large-scale teleconnections over Eurasia. A stable and persistent tripole wave pattern is responsible for type-A wet EH. The activity of atmospheric blocking over northern Europe, where the pattern originates, plays a crucial role in maintaining this pattern. By contrast, type-B wet EH and dry EH are related to a quadrupole pattern and a Silk Road pattern–like teleconnection, respectively, both lasting for a shorter time. These results highlight the diversity of EH, which suggests that multiple local and large-scale circulations should be considered to improve the forecast skills for EH.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Xu, xuke@mail.iap.ac.cn

Abstract

This study indicates a significant variation of humidity on extreme heat (EH) days over South Korea and southern–central Japan during the period 1979–2018. EH is therefore classified into three categories: type-A wet EH, type-B wet EH, and dry EH. Their statistical characteristics and formation mechanisms are investigated and compared. Our results suggest that the type-A wet EH is the most destructive, with the highest intensity, longest duration, and broadest spatial scale covering most of midlatitude East Asia. By contrast, type-B wet EH and dry EH are weaker, shorter, and mostly confined to northeast Asia. Despite these differences in characteristics, both types of wet EH are caused by the poleward advance of tropical warm and humid air masses as a result of the northward displacement of the Asian westerly jet. By contrast, dry EH is primarily induced by an increase in adiabatic heating and solar radiation resulting from anomalous subsidence. The three types of EH are associated with distinct large-scale teleconnections over Eurasia. A stable and persistent tripole wave pattern is responsible for type-A wet EH. The activity of atmospheric blocking over northern Europe, where the pattern originates, plays a crucial role in maintaining this pattern. By contrast, type-B wet EH and dry EH are related to a quadrupole pattern and a Silk Road pattern–like teleconnection, respectively, both lasting for a shorter time. These results highlight the diversity of EH, which suggests that multiple local and large-scale circulations should be considered to improve the forecast skills for EH.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Xu, xuke@mail.iap.ac.cn
Save