Urbanization Effects on Estimates of Global Trends in Mean and Extreme Air Temperature

Panfeng Zhang Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Panfeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Guoyu Ren Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Guoyu Ren in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9351-4179
,
Yun Qin Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Yun Qin in
Current site
Google Scholar
PubMed
Close
,
Yaqian Zhai School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

Search for other papers by Yaqian Zhai in
Current site
Google Scholar
PubMed
Close
,
Tianlin Zhai School of Resource and Environmental Sciences, Wuhan University, Wuhan, China

Search for other papers by Tianlin Zhai in
Current site
Google Scholar
PubMed
Close
,
Suonam Kealdrup Tysa Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Suonam Kealdrup Tysa in
Current site
Google Scholar
PubMed
Close
,
Xiaoying Xue Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Xiaoying Xue in
Current site
Google Scholar
PubMed
Close
,
Guowei Yang Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Guowei Yang in
Current site
Google Scholar
PubMed
Close
, and
Xiubao Sun South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Xiubao Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Identifying and separating the signal of urbanization effects in current temperature data series is essential for accurately detecting, attributing, and projecting mean and extreme temperature change on varied spatial scales. This paper proposes a new method based on machine learning to classify the observational stations into rural stations and urban stations. Based on the classification of rural and urban stations, the global and regional land annual mean and extreme temperature indices series over 1951–2018 for all stations and rural stations were calculated, and the urbanization effects and the urbanization contribution of global land annual mean and extreme temperature indices series are quantitatively evaluated using the difference series between all stations and the rural stations. The results showed that the global land annual mean time series for mean temperature and most extreme temperature indices experienced statistically significant urbanization effects. The urbanization effects in the mean and extreme temperature indices series generally occurred after the mid-1980s, and there were significant differences of the magnitudes of urbanization effects among different regions. The urbanization effect on the trends of annual mean and extreme temperature indices series in East Asia is generally the strongest, which is consistent with the rapidly urbanization process in the region over the past decades, but it is generally small in Europe during the recent decades.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0389.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoyu Ren, guoyoo@cma.gov.cn

Abstract

Identifying and separating the signal of urbanization effects in current temperature data series is essential for accurately detecting, attributing, and projecting mean and extreme temperature change on varied spatial scales. This paper proposes a new method based on machine learning to classify the observational stations into rural stations and urban stations. Based on the classification of rural and urban stations, the global and regional land annual mean and extreme temperature indices series over 1951–2018 for all stations and rural stations were calculated, and the urbanization effects and the urbanization contribution of global land annual mean and extreme temperature indices series are quantitatively evaluated using the difference series between all stations and the rural stations. The results showed that the global land annual mean time series for mean temperature and most extreme temperature indices experienced statistically significant urbanization effects. The urbanization effects in the mean and extreme temperature indices series generally occurred after the mid-1980s, and there were significant differences of the magnitudes of urbanization effects among different regions. The urbanization effect on the trends of annual mean and extreme temperature indices series in East Asia is generally the strongest, which is consistent with the rapidly urbanization process in the region over the past decades, but it is generally small in Europe during the recent decades.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0389.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoyu Ren, guoyoo@cma.gov.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.95 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Bian, T., G. Ren, B. Zhang, L. Zhang, and Y. Yue, 2015: Urbanization effect on long-term trends of extreme temperature indices at Shijiazhuang station, North China. Theor. Appl. Climatol., 119, 407418, https://doi.org/10.1007/s00704-014-1127-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronaugh, D., 2020: climdex.pcic: PCIC implementation of Climdex routines, version 1.1-11. R package, https://CRAN.R-project.org/package=climdex.pcic.

  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yan, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandola, V., A. Banerjee, and V. Kumar, 2009: Anomaly detection: A survey. ACM Comput. Surv., 41 (3), 158, https://doi.org/10.1145/1541880.1541882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, L., J. D. Annan, J. C. Hargreaves, and S. Emori, 2011: Centennial scale warming over Japan: Are the rural stations really rural? Atmos. Sci. Lett., 12, 362367, https://doi.org/10.1002/asl.350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013a: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013b: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, https://doi.org/10.1175/BAMS-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., and Coauthors, 2020: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., Y. Li, A. Bejan, Y. Wang, and X. Yang, 2017: Horizontal extent of the urban heat dome flow. Sci. Rep., 7, 11681, https://doi.org/10.1038/s41598-017-09917-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frich, P., L. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujibe, F., 2009: Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol., 29, 18111822, https://doi.org/10.1002/joc.1822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., D. R. Easterling, and T. C. Peterson, 1996: The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climate, 9, 29412944, https://doi.org/10.1175/1520-0442(1996)009<2941:TIOLUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., J. Qi, B. M. Lofgren, N. Moore, N. Torbick, and J. M. Olson, 2007: Impacts of land use/cover classification accuracy on regional climate simulations. J. Geophys. Res., 112, D05107, https://doi.org/10.1029/2006JD007404.

    • Search Google Scholar
    • Export Citation
  • Handmer, J. Y., and Coauthors, 2012: Changes in impacts of climate extremes: Human systems and ecosystems. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 231–290.

  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 99731 022, https://doi.org/10.1029/1999JD900835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23 94723 963, https://doi.org/10.1029/2001JD000354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and Surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–218.

  • He, J. F., J. Y. Liu, D. F. Zhuang, W. Zhang, and M. L. Liu, 2007: Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theor. Appl. Climatol., 90, 217226, https://doi.org/10.1007/s00704-006-0273-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., 2020: raster: Geographic Data Analysis and Modeling, version 3.1-5. R package, https://CRAN.R-project.org/package=raster.

  • Hollmann, R., and Coauthors, 2013: The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., W. Dong, and Y. He, 2010: Impact of land surface forcings on mean and extreme temperature in eastern China. J. Geophys. Res., 115, D19117, https://doi.org/10.1029/2009JD013368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2009: The urban heat island in Central London and urban-related warming trends in Central London since 1900. Weather, 64, 323327, https://doi.org/10.1002/wea.432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, https://doi.org/10.1029/2008JD009916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Karl, T. R., H. F. Diaz, and G. Kukla, 1988: Urbanization: Its detection and effect in the United States climate record. J. Climate, 1, 10991123, https://doi.org/10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1955: Rank Correlation Methods. Charles Griffin, 196 pp.

  • Keywood, M. D., K. M. Emmerson, and M. F. Hibberd, 2016: Ambient air quality: Assessment Summaries. Australia state of the environment 2016, Australian Government Department of the Environment and Energy, Canberra, accessed 1 December 2020, https://soe.environment.gov.au/theme/ambient-air-quality/assessment-summaries.

  • Khan, S. S., and M. G. Madden, 2010: A survey of recent trends in one class classification. Artificial Intelligence and Cognitive Science, L. Coyle and J. Freyne, Eds., Springer, 188–197.

    • Crossref
    • Export Citation
  • Khan, S. S., and M. G. Madden, 2014: One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev., 29, 345374, https://doi.org/10.1017/S026988891300043X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., J. Huang, Z. Jiang, L. Zhou, P. Chu, and K. Hu, 2014: Detection of urbanization signals in extreme winter minimum temperature changes over Northern China. Climatic Change, 122, 595608, https://doi.org/10.1007/s10584-013-1013-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., L. Wang, H. Zhou, G. Zhao, F. Ling, X. Li, and J. Qiu, 2019: Urbanization effects on changes in the observed air temperatures during 1977–2014 in China. Int. J. Climatol., 39, 251265, https://doi.org/10.1002/joc.5802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F. T., K. M. Ting, and Z.-H. Zhou, 2008: Isolation Forest. 2008 Eighth IEEE Int. Conf. on Data Mining (ICDM), Pisa, Italy, IEEE, 413–422.

  • Liu, F. T., K. M. Ting, and Z.-H. Zhou, 2012: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data, 6 (1), 139, https://doi.org/10.1145/2133360.2133363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econ. Soc., 13, 245259, https://doi.org/10.2307/1907187.

  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S. Historical Climatology network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931008, https://doi.org/10.1175/2008BAMS2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012a: Global Historical Climatology Network–Daily (GHCN-Daily), version 3.27, accessed 26 February 2020, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012b: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. E., 2006: A demonstration that large-scale warming is not urban. J. Climate, 19, 28822895, https://doi.org/10.1175/JCLI3730.1.

  • Parker, D. E., 2010: Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev.: Climate Change, 1, 123133, https://doi.org/10.1002/wcc.21.

    • Search Google Scholar
    • Export Citation
  • Patra, S., S. Sahoo, P. Mishra, and S. C. Mahapatra, 2018: Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manage., 7, 7084, https://doi.org/10.1016/j.jum.2018.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830, http://arxiv.org/abs/1201.0490.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., 2003: Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J. Climate, 16, 29412959, https://doi.org/10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., K. P. Gallo, J. Lawrimore, T. W. Owen, A. Huang, and D. A. McKittrick, 1999: Global rural temperature trends. Geophys. Res. Lett., 26, 329332, https://doi.org/10.1029/1998GL900322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, https://doi.org/10.1029/2007JD009453.

    • Search Google Scholar
    • Export Citation
  • Qian, C., X. Zhang, and Z. Li, 2019: Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Climate Dyn., 53, 533550, https://doi.org/10.1007/s00382-018-4600-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., L. Ruby Leung, S. J. Ghan, and F. Giorgi, 2003: Regional climate effects of aerosols over China: Modeling and observation. Tellus, 55B, 914934, https://doi.org/10.3402/tellusb.v55i4.16379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G., and Y. Zhou, 2014: Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Climate, 27, 23402360, https://doi.org/10.1175/JCLI-D-13-00393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G., Y. Zhou, Z. Chu, J. Zhou, A. Zhang, J. Guo, and X. Liu, 2008: Urbanization effects on observed surface air temperature trends in north China. J. Climate, 21, 13331348, https://doi.org/10.1175/2007JCLI1348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G., and Coauthors, 2015: An integrated procedure to determine a reference station network for evaluating and adjusting urban bias in surface air temperature data. J. Appl. Meteor. Climatol., 54, 12481266, https://doi.org/10.1175/JAMC-D-14-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., and G. Ren, 2011: A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends. J. Climate, 24, 31793189, https://doi.org/10.1175/2010JCLI3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scikit-learn developers, 2019: Novelty and outlier detection. https://scikit-learn.org/stable/modules/outlier_detection.html.

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squintu, A. A., G. van der Schrier, Y. Brugnara, and A. Klein Tank, 2019: Homogenization of daily temperature series in the European Climate Assessment & Dataset. Int. J. Climatol., 39, 12431261, https://doi.org/10.1002/joc.5874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C., and Y. Hu, 1988: Cold island effect over oasis and lake. Chin. Sci. Bull., 33, 10231026.

  • Sun, Y., T. Hu, X. Zhang, C. Li, C. Lu, G. Ren, and Z. Jiang, 2019: Contribution of global warming and urbanization to changes in temperature extremes in Eastern China. Geophys. Res. Lett., 46, 11 42611 434, https://doi.org/10.1029/2019GL084281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B. C., 2001: Extreme temperature events in Australia. Ph.D. thesis, The University of Melbourne, 417 pp.

  • Trewin, B. C., 2013: A daily homogenized temperature data set for Australia. Int. J. Climatol., 33, 15101529, https://doi.org/10.1002/joc.3530.

  • Trewin, B. C., and Coauthors, 2020: An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149169, https://doi.org/10.1002/gdj3.95.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tysa, S. K., G. Ren, Y. Qin, P. Zhang, Y. Ren, W. Jia, and K. Wen, 2019: Urbanization effect in regional temperature series based on a remote sensing classification scheme of stations. J. Geophys. Res. Atmos., 124, 10 64610 661, https://doi.org/10.1029/2019JD030948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and É. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193, https://doi.org/10.3137/ao.440205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. L. Wang, E. J. Milewska, H. Wan, F. Yang, and V. Swail, 2012: A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res., 117, D18110, https://doi.org/10.1029/2012JD017859.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and A. Navarra, 1999: Analysis of Climate Variability: Applications of Statistical Techniques. Springer-Verlag, 346 pp.

    • Crossref
    • Export Citation
  • Wang, F., and Q. Ge, 2012: Estimation of urbanization bias in observed surface temperature change in China from 1980 to 2009 using satellite land-use data. Chin. Sci. Bull., 57, 17081715, https://doi.org/10.1007/s11434-012-4999-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008a: Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmos. Oceanic Technol., 25, 368384, https://doi.org/10.1175/2007JTECHA982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 24232444, https://doi.org/10.1175/2008JAMC1741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and Y. Feng, 2013: RHtests V4 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate. Science and Technology Branch, Environment Canada, 29 pp.

  • Wen, K., G. Ren, J. Li, A. Zhang, Y. Ren, X. Sun, and Y. Zhou, 2019: Recent surface air temperature change over mainland China based on an urbanization-bias adjusted dataset. J. Climate, 32, 26912705, https://doi.org/10.1175/JCLI-D-18-0395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., W. Xu, Q. Li, and S. Yang, 2014: Report on the development and evaluation of global land daily temperature and precipitation data sets. National Meteorological Information Center of China Meteorological Administration, 21 pp.

  • Yan, Z., and Z. Li, Q. li, and P. Jones, 2010: Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int. J. Climatol., 30, 12261234, https://doi.org/10.1002/joc.1971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., Y. Hou, and B. Chen, 2011: Observed surface warming induced by urbanization in east China. J. Geophys. Res., 116, D14113, https://doi.org/10.1029/2010JD015452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., L. R. Leung, N. Zhao, C. Zhao, Y. Qian, K. Hu, X. Liu, and B. Chen, 2017: Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett., 44, 69406950, https://doi.org/10.1002/2017GL074084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and Coauthors, 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM–aerosol coupled system. Climate Dyn., 38, 16751693, https://doi.org/10.1007/s00382-011-1131-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., G. Ren, J. Liu, Y. Zhou, Y. Ren, A. Zhang, and Y. Feng, 2011: Urban effect on trends of extreme temperature indices at Beijing Meteorological Station. Chin. J. Geophys., 54, 11501159, https://doi.org/10.3969/j.issn.0001-5733.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., G. Ren, Y.-Y. Ren, A.-Y. Zhang, Z.-Y. Chu, and Y.-Q. Zhou, 2014: Effect of data homogenization on estimate of temperature trend: A case of Huairou station in Beijing Municipality. Theor. Appl. Climatol., 115, 365373, https://doi.org/10.1007/s00704-013-0894-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., G. Ren, Y. Xu, X. L. Wang, Y. Qin, X. Sun, and Y. Ren, 2019: Observed changes in extreme temperature over the global land based on a newly developed station daily dataset. J. Climate, 32, 84898509, https://doi.org/10.1175/JCLI-D-18-0733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. A. Vincent, W. D. Hogg, and A. Niitsoo, 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.–Ocean, 38, 395429, https://doi.org/10.1080/07055900.2000.9649654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhao, N., Y. Jiao, T. Ma, M. Zhao, Z. Fan, X. Yin, Y. Liu, and T. Yue, 2019: Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Sci. Total Environ., 688, 10051015, https://doi.org/10.1016/j.scitotenv.2019.06.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, J. Fang, Q. Li, R. K. Kaufmann, C. J. Tucker, and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544, https://doi.org/10.1073/pnas.0400357101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and G. Ren, 2011: Change in extreme temperature event frequency over mainland China, 1961–2008. Climate Res., 50, 125139, https://doi.org/10.3354/cr01053.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2263 0 0
Full Text Views 5373 2236 505
PDF Downloads 2671 587 59