• Addor, N., O. Rössler, K. Köplin, M. Huss, R. Weingartner, and J. Seibert, 2014: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour. Res., 50, 75417562, https://doi.org/10.1002/2014WR015549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 1–18.

    • Crossref
    • Export Citation
  • Below, R., Grover-Kopec, E., and Dilley, M. 2007. Documenting drought-related disasters: A global reassessment. J. Environ. Dev., 16, 328344, https://doi.org/10.1177%2F1070496507306222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., J. Sheffield, and P. C. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordi, I., K. Fraedrich, and A. Sutera, 2009: Observed drought and wetness trends in Europe: An update. Hydrol. Earth Syst. Sci., 13, 15191530, https://doi.org/10.5194/hess-13-1519-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., 2011: Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J. Hydrometeor., 12, 13781394, https://doi.org/10.1175/2011JHM1386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and S. J. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299, https://doi.org/10.1175/2007JHM929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2017: Characterizing present and future drought changes over eastern China. Int. J. Climatol., 37, 138156, https://doi.org/10.1002/joc.4987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., C. Y. Xu, and S. Guo, 2012: Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol., 434–435, 3645, https://doi.org/10.1016/j.jhydrol.2012.02.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, https://doi.org/10.1016/j.jhydrol.2011.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 41874205, https://doi.org/10.1002/wrcr.20331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu-Agor, M. L., R. Muñoz-Carpena, G. Kiker, A. Emanuelsson, and I. Linkov, 2011: Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses. Environ. Modell. Software, 26, 593604, https://doi.org/10.1016/j.envsoft.2010.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev. Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81.

  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, H., and M. Ye, 2015: Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. J. Hydrol., 528, 286300, https://doi.org/10.1016/j.jhydrol.2015.06.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, H., M. Ye, A. P. Walker, and X. Y. Chen, 2017a: A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resour. Res., 53, 34763490, https://doi.org/10.1002/2016WR019715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, H., X. Chen, M. Ye, X. Song, and J. M. Zachara, 2017b: A geostatistics–informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resour. Res., 53, 43274343, https://doi.org/10.1002/2016WR019756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field, 2015: Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 13 17213 177, https://doi.org/10.1073/pnas.1421010112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, D. C., and T. B. McKee, 1997: Characteristics of 20th century drought in the United States at multiple time scales. Colorado State University Department of Atmospheric Science Climatology Rep. 97-2, 155 pp., https://mountainscholar.org/handle/10217/170176.

  • Environment and Climate Change Canada, 2020: CMIP5 gridded data, accessed 4 May 2020, https://climate-scenarios.canada.ca/?page=gridded-data.

  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Q. Zhao, X. Zhao, P. Wu, W. Pan, X. Gao, and M. Sun, 2017: Temporal and spatial evolution of the Standardized Precipitation Evapotranspiration Index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ., 595, 191200, https://doi.org/10.1016/j.scitotenv.2017.03.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giuntoli, I., J. P. Vidal, C. Prudhomme, and D. M. Hannah, 2015: Future hydrological extremes: The uncertainty from multiple global climate and global hydrological models. Earth Syst. Dyn., 6, 267285, https://doi.org/10.5194/esd-6-267-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giuntoli, I., G. Villarini, C. Prudhomme, and D. M. Hannah, 2018: Uncertainties in projected runoff over the conterminous United States. Climatic Change, 150, 149162, https://doi.org/10.1007/s10584-018-2280-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., M. L. Roderick, and S. I. Seneviratne, 2017: Simulated changes in aridity from the last glacial maximum to 4xCO2. Environ. Res. Lett., 12, 114021, https://doi.org/10.1088/1748-9326/aa89a3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Coauthors, 2013: Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn., 4, 129144, https://doi.org/10.5194/esd-4-129-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborna, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., T. M. Osborne, C. K. Ho, and A. J. Challinor, 2013: Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteor., 170, 1931, https://doi.org/10.1016/j.agrformet.2012.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • Johnson, F., and A. Sharma, 2015: What are the impacts of bias correction on future drought projections? J. Hydrol., 525, 472485, https://doi.org/10.1016/j.jhydrol.2015.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 272 pp.

  • Lehner, F., S. Coats, T. F. Stocker, A. G. Pendergrass, B. M. Sanderson, C. C. Raible, and J. E. Smerdon, 2017: Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett., 44, 74197428, https://doi.org/10.1002/2017GL074117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. T. Wetherald, P. C. D. Milly, T. L. Delworth, and R. J. Stouffer, 2004: Century-scale change in water availability: CO2-quadrupling experiment. Climatic Change, 64, 5976, https://doi.org/10.1023/B:CLIM.0000024674.37725.ca.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, https://doi.org/10.5194/hess-14-1125-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Milly, P. C., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2009: Analysis of drought severity–area–frequency curves using a general circulation model and scenario uncertainty. J. Geophys. Res., 114, D06120, https://doi.org/10.1029/2008JD010986.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasrollahi, N., A. AghaKouchak, L. Cheng, L. Damberg, T. J. Phillips, C. Miao, K. Hsu, and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 28472864, https://doi.org/10.1002/2014WR016318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci., 17, 17651781, https://doi.org/10.5194/hess-17-1765-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osuch, M., R. J. Romanowicz, D. Lawrence, and W. K. Wong, 2016: Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol. Earth Syst. Sci., 20, 19471969, https://doi.org/10.5194/hess-20-1947-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, https://doi.org/10.1175/JHM-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Coauthors, 2014: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA, 111, 32623267, https://doi.org/10.1073/pnas.1222473110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhee, J., and J. Cho, 2016: Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. J. Hydrometeor., 17, 437451, https://doi.org/10.1175/JHM-D-15-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., P. Greve, and G. D. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, https://doi.org/10.1002/2015WR017031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltelli, A., 2000. What is sensitivity analysis? Sensitivity Analysis, A. Saltelli, K. Chan, and M. Scott, Eds., Wiley, 3–14.

  • Samaniego, L., and Coauthors, 2018: Anthropogenic warming exacerbates European soil moisture droughts. Nat. Climate Change, 8, 421426, https://doi.org/10.1038/s41558-018-0138-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, https://doi.org/10.1007/s00382-007-0340-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiau, J. T., 2006: Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manage., 20, 795815, https://doi.org/10.1007/s11269-005-9008-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., J. Zhang, C. Zhan, Y. Xuan, M. Ye, and C. Xu, 2015: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol., 523, 739757, https://doi.org/10.1016/j.jhydrol.2015.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinoni, J., J. V. Vogt, G. Naumann, P. Barbosa, and A. Dosio, 2018: Will drought events become more frequent and severe in Europe? Int. J. Climatol., 38, 17181736, https://doi.org/10.1002/joc.5291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., H. Madsen, and P. H. Ang, 2012: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res., 103, 119128, https://doi.org/10.1016/j.atmosres.2011.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, S., and K. Hayhoe, 2015: CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dyn., 44, 27372750, https://doi.org/10.1007/s00382-014-2255-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., X. Niu, S. Wang, H. Gao, X. Wang, and J. Wu, 2016: Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos., 121, 21102129, https://doi.org/10.1002/2015JD023977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, I. H., E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall, 2013: The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci., 17, 23392358, https://doi.org/10.5194/hess-17-2339-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., M. Ashfaq, M. A. Nayak, S. C. Kao, and N. S. Diffenbaugh, 2015: A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol., 526, 196207, https://doi.org/10.1016/j.jhydrol.2014.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., A. J. Pitman, M. G. De Kauwe, G. Abramowitz, N. Herger, J. P. Evans, and M. Decker, 2018: Evaluating CMIP5 model agreement for multiple drought metrics. J. Hydrometeor., 19, 969988, https://doi.org/10.1175/JHM-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, T., and Coauthors, 2017: Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141, 419433, https://doi.org/10.1007/s10584-016-1794-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., and Coauthors, 2013: Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett., 40, 46264632, https://doi.org/10.1002/grl.50686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagener, T., and F. Pianosi, 2019: What has global sensitivity analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in Earth system modelling. Earth-Sci. Rev., 194, 118, https://doi.org/10.1016/j.earscirev.2019.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M., D. R. Easterling, J. H. Lawrimore, R. R. Heim Jr.., R. S. Vose, and B. D. Santer, 2011: Projections of future drought in the continental United States and Mexico. J. Hydrometeor., 12, 13591377, https://doi.org/10.1175/2011JHM1351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res., 107, 4379, https://doi.org/10.1029/2001JD001195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D., 2000. Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, D. A. Whilhite, Eds., Routledge, 3–18.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenamier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. H., and G. R. Huang, 2015: Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, South China. Int. J. Climatol., 35, 29782992, https://doi.org/10.1002/joc.4187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. H., Z. Y. Xian, and G. R. Huang, 2016: Meteorological drought in the Beijiang River basin, South China: Current observations and future projections. Stochastic Environ. Res. Risk Assess., 30, 18211834, https://doi.org/10.1007/s00477-015-1157-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. H., B. X. Hu, G. R. Huang, P. Wang, and K. Xu, 2018: Responses of runoff to historical and future climate variability over China. Hydrol. Earth Syst. Sci., 22, 19711991, https://doi.org/10.5194/hess-22-1971-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., M. J. Hayes, D. A. Wilhite, and M. D. Svoboda, 2005: The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol., 25, 505520, https://doi.org/10.1002/joc.1142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., C. H. Wu, and B. X. Hu, 2019a: Projected changes of temperature extremes over nine major basins in China based on the CMIP5 multimodel ensembles. Stochastic Environ. Res. Risk Assess., 33, 321339, https://doi.org/10.1007/s00477-018-1569-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., B. B. Xu, J. L. Ju, C. H. Wu, H. Dai, and B. X. Hu, 2019b: Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmos. Res., 226, 122137, https://doi.org/10.1016/j.atmosres.2019.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. L. Roderick, S. Zhang, T. R. McVicar, and R. J. Donohue, 2019: Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Climate Change, 9, 4448, https://doi.org/10.1038/s41558-018-0361-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, P. J.-F., and C. H. Wu, 2018: Recent acceleration of the terrestrial hydrologic cycle in the U.S. Midwest. J. Geophys. Res. Atmos., 123, 9933008, https://doi.org/10.1002/2017JD027706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yevjevich, V. M., 1967. Objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Papers 23, Colorado State University, Fort Collins, CO, 18 pp.

  • Yu, M., Q. Li, M. J. Hayes, M. D. Svoboda, and R. R. Heim, 2014: Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol., 34, 545558, https://doi.org/10.1002/joc.3701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, J., B. Su, V. Krysanova, T. Vetter, C. Gao, and T. Jiang, 2010: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Climate, 23, 649663, https://doi.org/10.1175/2009JCLI2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H. Y., C. H. Wu, P. J.-F. Yeh, and B. X. Hu, 2020: Global pattern of short-term concurrent hot and dry extremes and its relationship to large-scale climate indices. Int. J. Climatol., 40, 59065924, https://doi.org/10.1002/joc.6555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climatic Change, 144, 535548, https://doi.org/10.1007/s10584-016-1742-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Q. H. Wen, Y. Xu, L. Song, and X. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 65916611, https://doi.org/10.1175/JCLI-D-13-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1121 574 0
Full Text Views 317 244 22
PDF Downloads 362 268 23

Assessing the Spatiotemporal Uncertainties in Future Meteorological Droughts from CMIP5 Models, Emission Scenarios, and Bias Corrections

View More View Less
  • 1 Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, China
  • | 2 Green Development Institute of Zhaoqing, Zhaoqing, China
  • | 3 Discipline of Civil Engineering, School of Engineering, Monash University, Malaysia Campus, Subang Jaya, Malaysia
  • | 4 School of Water Resources and Environment, China University of Geosciences, Beijing, China
  • | 5 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
  • | 6 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Drought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modeling and forcing data. Using the standardized precipitation index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance-based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, three representative concentration pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and two bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM uncertainty (>60%), followed by BC (<35%) and RCP (<16%) uncertainty. Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in the NH than the Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in the NH than the SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr time scales, the contributions for three uncertainty sources show larger variability in S than Df projections, especially in the SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0411.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuanhao Wu, wuch0907@jnu.edu.cn

Abstract

Drought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modeling and forcing data. Using the standardized precipitation index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance-based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, three representative concentration pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and two bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM uncertainty (>60%), followed by BC (<35%) and RCP (<16%) uncertainty. Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in the NH than the Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in the NH than the SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr time scales, the contributions for three uncertainty sources show larger variability in S than Df projections, especially in the SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0411.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuanhao Wu, wuch0907@jnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.62 MB)
Save