Climate Model Teleconnection Patterns Govern the Niño-3.4 Response to Early Nineteenth-Century Volcanism in Coral-Based Data Assimilation Reconstructions

Sara C. Sanchez Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Sara C. Sanchez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1923-1218
,
Gregory J. Hakim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
, and
Casey P. Saenger Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Casey P. Saenger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Scientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives (δ18O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early nineteenth century, southwestern Pacific corals produce El Niño–Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yields reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.

Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0549.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sara C. Sanchez, sara.sanchez@colorado.edu

Abstract

Scientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives (δ18O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early nineteenth century, southwestern Pacific corals produce El Niño–Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yields reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.

Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0549.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sara C. Sanchez, sara.sanchez@colorado.edu

Supplementary Materials

    • Supplemental Materials (ZIP 1.79 MB)
Save
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño–like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alibert, C., and L. Kinsley, 2008: A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 2. A window into variability of the New Ireland Coastal Undercurrent. J. Geophys. Res., 113, C06006, https://doi.org/10.1029/2007JC004263.

    • Search Google Scholar
    • Export Citation
  • Asami, R., T. Yamada, Y. Iryu, T. M. Quinn, C. P. Meyer, and G. Paulay, 2005: Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: Reconstruction based on stable isotope record from a Guam coral. J. Geophys. Res., 110, C05018, https://doi.org/10.1029/2004JC002555.

    • Search Google Scholar
    • Export Citation
  • Bagnato, S., B. K. Linsley, S. S. Howe, G. M. Wellington, and J. Salinger, 2005: Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem. Geophys. Geosyst., 6, Q06001, https://doi.org/10.1029/2004GC000879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batehup, R., S. McGregor, and A. J. E. Gallant, 2015: The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework. Climate Past, 11, 17331749, https://doi.org/10.5194/cp-11-1733-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J. W., R. L. Edwards, E. Ito, F. W. Taylor, J. Recy, F. Rougerie, P. Joannot, and C. Henin, 1992: Sea-surface temperature from coral skeletal strontium/calcium ratios. Science, 257, 644647, https://doi.org/10.1126/science.257.5070.644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., É. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., and Coauthors, 2019: Last phase of the Little Ice Age forced by volcanic eruptions. Nat. Geosci., 12, 650656, https://doi.org/10.1038/s41561-019-0402-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582, https://doi.org/10.1175/2010JCLI3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, C. D., K. Cobb, M. D. Moore, and R. G. Fairbanks, 2003: Monsoon–tropical ocean interaction in a network of coral records spanning the 20th century. Mar. Geol., 201, 207222, https://doi.org/10.1016/S0025-3227(03)00217-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., J. E. Smerdon, B. I. Cook, and R. Seager, 2013: Stationarity of the tropical Pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophys. Res. Lett., 40, 49274932, https://doi.org/10.1002/grl.50938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., and R. G. Fairbanks, 1990: The Southern Oscillation recorded in the δ18O of corals from Tarawa Atoll. Paleoceanography, 5, 669683, https://doi.org/10.1029/PA005i005p00669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., and E. R. Cook, 1998: The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys. Res. Lett., 25, 45294532, https://doi.org/10.1029/1998GL900145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., R. B. Dunbar, T. R. McClanahan, and N. A. Muthiga, 2000: Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science, 287, 617619, https://doi.org/10.1126/science.287.5453.617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Conroy, J. L., K. M. Cobb, J. Lynch-Stieglitz, and P. J. Polissar, 2014: Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean. Mar. Chem., 161, 2633, https://doi.org/10.1016/j.marchem.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., D. M. Thompson, K. M. Cobb, D. Noone, S. Rea, and A. N. Legrande, 2017: Spatiotemporal variability in the δ18O–salinity relationship of seawater across the tropical Pacific Ocean. Paleoceanography, 32, 484497, https://doi.org/10.1002/2016PA003073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., S. P. Obrochta, and J. Liu, 2014: Recent global temperature “plateau” in the context of a new proxy reconstruction. Earth’s Future, 2, 281294, https://doi.org/10.1002/2013EF000216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boisséson, E., M. A. Balmaseda, and M. Mayer, 2018: Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. Climate Dyn., 50, 37833798, https://doi.org/10.1007/s00382-017-3845-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, S., J. Emile-Geay, M. N. Evans, A. Allam, E. J. Steig, and D. M. Thompson, 2015: PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems. J. Adv. Model. Earth Syst., 7, 12201247, https://doi.org/10.1002/2015MS000447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, S., Y. Okumura, S. Stevenson, and P. DiNezio, 2020a: Enhanced North American ENSO teleconnections during the Little Ice Age revealed by paleoclimate data assimilation. Geophys. Res. Lett., 47, e2020GL087504, https://doi.org/10.1029/2020GL087504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, S., K. M. Cobb, J. Emile-Geay, T. R. Ault, R. L. Edwards, H. Cheng, and C. D. Charles, 2020b: No consistent ENSO response to volcanic forcing over the last millennium. Science, 367, 14771481, https://doi.org/10.1126/science.aax2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLong, K. L., T. M. Quinn, F. W. Taylor, K. Lin, and C.-C. Shen, 2012: Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nat. Climate Change, 2, 799804, https://doi.org/10.1038/nclimate1583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLong, K. L., J. A. Flannery, R. Z. Poore, T. M. Quinn, C. R. Maupin, K. Lin, and C.-C. Shen, 2014: A reconstruction of sea surface temperature variability in the southeastern Gulf of Mexico from 1734 to 2008 CE using cross-dated Sr/Ca records from the coral Siderastrea siderea. Paleoceanography, 29, 403422, https://doi.org/10.1002/2013PA002524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans, 119, 56225637, https://doi.org/10.1002/2013JC009780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druffel, E. R. M., and S. Griffin, 1999: Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. J. Geophys. Res., 104, 232607232613, https://doi.org/10.1029/1999JC900212.

    • Search Google Scholar
    • Export Citation
  • Druffel, E. R. M., S. Griffin, D. Vetter, R. B. Dunbar, and D. M. Mucciarone, 2015: Identification of frequent La Niña events during the early 1800s in the east equatorial Pacific. Geophys. Res. Lett., 42, 15121519, https://doi.org/10.1002/2014GL062997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, R. B., G. M. Wellington, M. W. Colgan, and P. W. Glynn, 1994: Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals. Paleoceanography, 9, 291315, https://doi.org/10.1029/93PA03501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 31343148, https://doi.org/10.1175/2007JCLI1884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, 1953: Revised carbonate-water isotopic temperature scale. Geol. Soc. Amer. Bull., 64, 13151326, https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M. N., S. E. Tolwinski-Ward, D. M. Thompson, and K. J. Anchukaitis, 2013: Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev., 76, 1628, https://doi.org/10.1016/j.quascirev.2013.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairbanks, R. G., M. N. Evans, J. L. Rubenstone, R. A. Mortlock, K. Broad, M. D. Moore, and C. D. Charles, 1997: Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 16, S93S100, https://doi.org/10.1007/s003380050245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felis, T., J. Pätzold, Y. Loya, M. Fine, A. H. Nawar, and G. Wefer, 2000: A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography, 15, 679694, https://doi.org/10.1029/1999PA000477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Goodkin, N. F., K. A. Hughen, S. C. Doney, and W. B. Curry, 2008: Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nat. Geosci., 1, 844848, https://doi.org/10.1038/ngeo352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, M., and J. Marshall, 2018: The climate response to multiple volcanic eruptions mediated by ocean heat uptake: Damping processes and accumulation potential. J. Climate, 31, 86698687, https://doi.org/10.1175/JCLI-D-17-0703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. J. Geophys. Res. Atmos., 121, 67456764, https://doi.org/10.1002/2016JD024751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Heiss, G. A., W.-C. Dullo, M. M. Joachimski, J. J. G. Reijmer, and H. Schuhmacher, 1999: Increased seasonality in the Gulf of Aqaba, Red Sea, recorded in the oxygen isotope record of a Porites lutea coral. Senckenb. Marit., 30, 1726, https://doi.org/10.1007/BF03042826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennekam, R., J. Zinke, E. van Sebille, M. ten Have, G.-J. A. Brummer, and G.-J. Reichart, 2018: Cocos (Keeling) corals reveal 200 years of multidecadal modulation of southeast Indian Ocean hydrology by Indonesian throughflow. Paleoceanogr. Paleoclimatol., 33, 4860, https://doi.org/10.1002/2017PA003181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D. B., and Coauthors, 2011: Evaluating global climate models for the Pacific island region. Climate Res., 49, 169187, https://doi.org/10.3354/cr01028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997: Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res., 102, 272835272860, https://doi.org/10.1029/97JC01734.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilbourne, K. H., T. M. Quinn, R. Webb, T. Guilderson, J. Nyberg, and A. Winter, 2008: Paleoclimate proxy perspective on Caribbean climate since the year 1751: Evidence of cooler temperatures and multidecadal variability. Paleoceanography, 23, PA3220, https://doi.org/10.1029/2008PA001598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., and J. R. O’Neil, 1997: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta, 61, 34613475, https://doi.org/10.1016/S0016-7037(97)00169-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., J. Pätzold, B. Hatcher, K.-H. Wyrwoll, A. Eisenhauer, L. B. Collins, Z. R. Zhu, and G. Wefer, 1999: A 200-year coral stable oxygen isotope record from a high-latitude reef off Western Australia. Coral Reefs, 18, 112, https://doi.org/10.1007/s003380050147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., T. Crüger, and J. Pätzold, 2005: NAO signature in a Bermuda coral Sr/Ca record. Geochem. Geophys. Geosyst., 6, Q04004, https://doi.org/10.1029/2004GC000786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawman, A. E., J. W. Partin, S. G. Dee, C. A. Casadio, P. DiNezio, and T. M. Quinn, 2020: Developing a coral proxy system model to compare coral and climate model estimates of changes in Paleo-ENSO variability. Paleoceanogr. Paleoclimatol., 35, e2019PA003836, https://doi.org/10.1029/2019PA003836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., and G. A. Schmidt, 2006: Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. P. Schurer, G. C. Hegerl, C. Deser, and T. L. Frölicher, 2016: The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett., 43, 28512858, https://doi.org/10.1002/2016GL067935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., R. B. Dunbar, G. M. Wellington, and D. A. Mucciarone, 1994: A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707. J. Geophys. Res., 99, 99779994, https://doi.org/10.1029/94JC00360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., A. Kaplan, Y. Gouriou, J. Salinger, P. B. Demenocal, G. M. Wellington, and S. S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, https://doi.org/10.1029/2005GC001115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2004: A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 115143, https://doi.org/10.1016/S0031-0182(03)00727-2.

    • Search Google Scholar
    • Export Citation
  • Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, https://doi.org/10.1002/2015GL064751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, https://doi.org/10.1175/JCLI-3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, https://doi.org/10.1175/2010JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, S. A., N. F. Goodkin, A. A. Wiguna, and A. L. Gordon, 2018: Variability in coral-reconstructed sea surface salinity between the northern and southern Lombok Strait linked to East Asian winter monsoon mean state reversals. Paleoceanogr. Paleoclimatol., 33, 11161133, https://doi.org/10.1029/2018PA003387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., and J. Sutcliffe, 1970: River flow forecasting through conceptual models: Part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newhall, C. G., and S. Self, 1982: The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. J. Geophys. Res., 87, 12311238, https://doi.org/10.1029/JC087iC02p01231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 51695182, https://doi.org/10.1175/JCLI-D-12-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neil, J. R., R. N. Clayton, and T. K. Mayeda, 1969: Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51, 55475558, https://doi.org/10.1063/1.1671982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, M. C., R. B. Dunbar, D. A. Mucciarone, E. Druffel, and J.-A. Sanchez-Cabeza, 2014: A 215-yr coral δ18O time series from Palau records dynamics of the West Pacific warm pool following the end of the Little Ice Age. Coral Reefs, 33, 719731, https://doi.org/10.1007/s00338-014-1146-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., 2014: CCSM4 coupled simulation for CMIP5 past 1000 years (850–1850) with natural forcings, served by ESGF. World Data Center for Climate (WDCC) at DKRZ, accessed October 2018, https://doi.org/10.1594/WDCC/CMIP5.NRS4pk.

    • Crossref
    • Export Citation
  • Otto-Bliesner, B., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F., L. Chafik, R. Caballero, and D. S. Battisti, 2015: Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA, 112, 132784132788, https://doi.org/10.1073/pnas.1509153112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F., C. Karamperidou, R. Caballero, and D. S. Battisti, 2016: ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions. Geophys. Res. Lett., 43, 86948702, https://doi.org/10.1002/2016GL069575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Predybaylo, E., G. L. Stenchikov, A. T. Wittenberg, and F. Zeng, 2017: Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res. Atmos., 122, 925947, https://doi.org/10.1002/2016JD025796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T. M., T. J. Crowley, and F. W. Taylor, 1996: New stable isotope results from a 173-year coral from Espiritu Santo, Vanuatu. Geophys. Res. Lett., 23, 34133416, https://doi.org/10.1029/96GL03169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T. M., T. J. Crowley, F. W. Taylor, C. Henin, P. Joannot, and Y. Join, 1998: A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D. Paleoceanography, 13, 412426, https://doi.org/10.1029/98PA00401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton,