• Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Y. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnidov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, https://doi.org/10.1029/2009GL037604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., P. van Rensch, T. Cowan, and H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., X. T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. D. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254258, https://doi.org/10.1038/nature13327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and Coauthors, 2018: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5°C warming. Nat. Commun., 9, 1419, https://doi.org/10.1038/s41467-018-03789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., J. Y. Yu, X. Wang, and T. Lian, 2020: Different influences of southeastern Indian Ocean and western Indian Ocean SST anomalies on eastern China rainfall during the decaying summer of 2015/16 extreme El Niño. J. Climate, 33, 54275443, https://doi.org/10.1175/JCLI-D-19-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., K. J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071, https://doi.org/10.1007/s00382-009-0555-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, J., Y. L. Li, L. Zhang, and F. Wang, 2020: Impacts of the Indian Ocean dipole on sea level and gyre circulation of the western tropical Pacific Ocean. J. Climate, 33, 42074228, https://doi.org/10.1175/JCLI-D-19-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., Q. Liu, C. Wang, and F. Guo, 2017: Indian Ocean dipole modes associated with different types of ENSO development. J. Climate, 30, 22332249, https://doi.org/10.1175/JCLI-D-16-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F. Y., Q. Liu, S. Sun, and J. Yang, 2015: Three types of Indian Ocean dipoles. J. Climate, 28, 30733092, https://doi.org/10.1175/JCLI-D-14-00507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, S.-P. Xie, and S.-M. Long, 2019: Effect of the mean flow on the anomalous anticyclone over the Indo-northwest Pacific in post-El Niño summers. Climate Dyn., 53, 57255741, https://doi.org/10.1007/s00382-019-04893-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. Shukla, 2007a: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936, https://doi.org/10.1175/JCLI4151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. Shukla, 2007b: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, https://doi.org/10.1175/JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., P. W. Thorne, V. F. Banzon, T. Boyer, and H. M. Zhang, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSST v5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129, 16231646, https://doi.org/10.1256/qj.01.166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, https://doi.org/10.1175/JCLI-D-14-00740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2016: A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J. Climate, 29, 55895608, https://doi.org/10.1175/JCLI-D-15-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and Coauthors, 2019: Effect of excessive equatorial Pacific cold tongue bias on the El Niño-northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Climate Dyn., 52, 61956212, https://doi.org/10.1007/s00382-018-4504-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874.

  • Li, J. P., and Q. C. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302, https://doi.org/10.1007/s00376-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., G. X. Wu, and D. X. Hu, 2011a: Ocean-Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 1, China Meteorological Press, 516 pp.

  • Li, J. P., G. X. Wu, and D. X. Hu, 2011b: Ocean-Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 2, China Meteorological Press, 565 pp.

  • Li, J. P., C. Sun, and F. F. Jin, 2013: NAO implicated as a predictor of Northern Hemisphere mean temperature multi-decadal variability. Geophys. Res. Lett., 40, 54975502, https://doi.org/10.1002/2013GL057877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, https://doi.org/10.1175/2011JCLI4041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., S. P. Xie, X. T. Zheng, T. Li, Y. Du, G. Huang, and W. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, https://doi.org/10.1007/s00382-013-2000-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuncio, M., and X. Yuan, 2015: The influence of the Indian Ocean dipole on Antarctic sea ice. J. Climate, 28, 26822690, https://doi.org/10.1175/JCLI-D-14-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G., 2017: Progress in climate modeling. Nat. Climate Change, 7, 684685, https://doi.org/10.1038/nclimate3398.

  • Song, F. F., and T. J. Zhou, 2014a: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F. F., and T. J. Zhou, 2014b: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, https://doi.org/10.1175/JCLI-D-14-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., F. Huang, Z. Wu, J. Yang, X. Fu, and K. Kikuchi, 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 1537, https://doi.org/10.1016/j.dynatmoce.2008.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, S. A. Rao, Z. Y. Guan, K. Ashok, and H. N. Saji, 2003: Comments on “Dipoles, temperature gradients, and tropical climate anomalies.” Bull. Amer. Meteor. Soc., 84, 14181422, https://doi.org/10.1175/BAMS-84-10-1418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S. P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, https://doi.org/10.1175/JCLI-D-15-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2003: Variability of the depth of the 20°C isotherm along 68°N in the Bay of Bengal: Its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Res. II, 50, 22852304, https://doi.org/10.1016/S0967-0645(03)00057-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. J., Y. Wang, F. F. Jin, M. F. Stuecker, and A. G. Turner, 2015: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42, 85708576, https://doi.org/10.1002/2015GL065703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, J. Q. Xue, J. Feng, Q. Y. Wang, Y. D. Xu, and Y. H. Wang, 2018: Impact of the South China Sea summer monsoon on the Indian Ocean dipole. J. Climate, 31, 65576573, https://doi.org/10.1175/JCLI-D-17-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, J. Q. Xue, F. Zheng, R. G. Wu, K. J. Ha, and J. Feng, 2019: The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean dipole development. Climate Dyn., 53, 66656680, https://doi.org/10.1007/s00382-019-04953-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., L. W. Zou, and X. L. Chen, 2019: Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) (in Chinese). Climate Change Res., 15, 445456, https://doi.org/10.12006/j.issn.1673-1719.2019.193.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 337 213 0
Full Text Views 165 127 23
PDF Downloads 183 137 23

Impact of the South China Sea Summer Monsoon on the Indian Ocean Dipole in CMIP5 Models

View More View Less
  • 1 Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, China
  • | 2 Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The impact of the South China Sea summer monsoon (SCSSM) on the Indian Ocean dipole (IOD) has been systematically investigated in observations. This study focuses on the ability of climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to reproduce the observed relationship between the SCSSM and IOD and the relevant physical mechanisms. All 23 models reproduce significant correlations between the SCSSM and IOD during boreal summer [June–August (JJA)], whereas the influence of the SCSSM on the IOD varies considerably across the CMIP5 models. To explore the causes, all models are divided into two groups. Models that successfully simulated both the correlations between the SCSSM and JJA IOD and of the SCSSM and JJA IOD with precipitation over the western North Pacific and Maritime Continent are classified as Type I, and these produce stronger low-level wind anomalies over the tropical southeastern Indian Ocean. The stronger low-level wind anomalies enhance local sea surface temperature (SST) anomalies via positive wind–evaporation–SST (WES) and wind–thermocline–SST (Bjerknes) feedbacks. This corresponds to a strengthening of IOD events due to the increased zonal gradient of SST anomalies over the tropical Indian Ocean. In contrast, Type II models perform poorly in representing the relationship between the SCSSM and JJA IOD or relevant physical processes, corresponding to weaker WES and Bjerknes feedbacks, and produce weaker IOD events. These results demonstrate that the better the model simulation of the critical physical processes, the larger contribution of the SCSSM to the IOD.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn

Abstract

The impact of the South China Sea summer monsoon (SCSSM) on the Indian Ocean dipole (IOD) has been systematically investigated in observations. This study focuses on the ability of climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to reproduce the observed relationship between the SCSSM and IOD and the relevant physical mechanisms. All 23 models reproduce significant correlations between the SCSSM and IOD during boreal summer [June–August (JJA)], whereas the influence of the SCSSM on the IOD varies considerably across the CMIP5 models. To explore the causes, all models are divided into two groups. Models that successfully simulated both the correlations between the SCSSM and JJA IOD and of the SCSSM and JJA IOD with precipitation over the western North Pacific and Maritime Continent are classified as Type I, and these produce stronger low-level wind anomalies over the tropical southeastern Indian Ocean. The stronger low-level wind anomalies enhance local sea surface temperature (SST) anomalies via positive wind–evaporation–SST (WES) and wind–thermocline–SST (Bjerknes) feedbacks. This corresponds to a strengthening of IOD events due to the increased zonal gradient of SST anomalies over the tropical Indian Ocean. In contrast, Type II models perform poorly in representing the relationship between the SCSSM and JJA IOD or relevant physical processes, corresponding to weaker WES and Bjerknes feedbacks, and produce weaker IOD events. These results demonstrate that the better the model simulation of the critical physical processes, the larger contribution of the SCSSM to the IOD.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn
Save