Modulation of North Pacific and North Atlantic Tropical Cyclones by Tropical Transbasin Variability and ENSO during May–October

Shaohua Chen a Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Shaohua Chen in
Current site
Google Scholar
PubMed
Close
,
Haikun Zhao Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haikun Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1771-1461
,
Graciela B. Raga Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico

Search for other papers by Graciela B. Raga in
Current site
Google Scholar
PubMed
Close
, and
Philip J. Klotzbach Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Philip J. Klotzbach in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study highlights the distinct modulation of May–October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP), and North Atlantic (NATL) Ocean basins by tropical transbasin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large-scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency as a result of changes in basinwide vertical wind shear and sea surface temperatures, whereas the modulation in TC frequency by ENSO is primarily caused by a north–south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC interannual variability and could thus be helpful for seasonal TC forecasting.

ORCID:0000-0002-1771-1461.

ORCID: 0000-0002-4295-4991.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com

Abstract

This study highlights the distinct modulation of May–October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP), and North Atlantic (NATL) Ocean basins by tropical transbasin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large-scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency as a result of changes in basinwide vertical wind shear and sea surface temperatures, whereas the modulation in TC frequency by ENSO is primarily caused by a north–south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC interannual variability and could thus be helpful for seasonal TC forecasting.

ORCID:0000-0002-1771-1461.

ORCID: 0000-0002-4295-4991.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com
Save
  • Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, https://doi.org/10.1175/JCLI3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110, 13931404, https://doi.org/10.1175/1520-0493(1982)110<1393:TRBIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., L. R. Leung, and J. H. Yoon, 2013: Oceanic control of northeast Pacific hurricane activity at interannual timescales. Environ. Res. Lett., 8, 044009, https://doi.org/10.1088/1748-9326/8/4/044009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., R. Wu, and X. Xiao, 2018: A new perspective of intensified impact of ENSO Modoki on tropical cyclone genesis frequency over the western North Pacific around 1990. Int. J. Climatol., 38, 42644275, https://doi.org/10.1002/JOC.5667.

    • Search Google Scholar
    • Export Citation
  • Caron, L. P., M. Boudreault, and S. J. Camargo, 2015: On the variability and predictability of eastern Pacific tropical cyclone activity. J. Climate, 28, 96789696, https://doi.org/10.1175/JCLI-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, https://doi.org/10.1029/2009JD013389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2013: An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Climate Dyn., 40, 12011222, https://doi.org/10.1007/s00382-012-1351-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skillful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, https://doi.org/10.1038/ncomms7869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., K.-J. Ha, C.-H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 32433255, https://doi.org/10.1007/s00382-015-2536-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, D., A. S. Gupta, A. Sharma, A. S. Taschetto, R. Mehrotra, and B. Sivakumar, 2017: Impacts of the tropical trans-basin variability on Australian rainfall. Climate Dyn., 49, 16171629, https://doi.org/10.1007/s00382-016-3405-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., 2010: Contrasting high northeast Pacific tropical cyclone activity with low North Atlantic activity. Southeast. Geogr., 50, 8398, https://doi.org/10.1353/sgo.0.0069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., A. Dai, M. Vuille, and O. Timm, 2018: Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific Oscillation. J. Climate, 31, 73377361, https://doi.org/10.1175/JCLI-D-17-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., C. R. Sampson, and J. M. Gross, 2004: A history of western North Pacific tropical cyclone track forecast skill. Wea. Forecasting, 19, 633638, https://doi.org/10.1175/1520-0434(2004)019<0633:AHOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 7386, https://doi.org/10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, Y., Z. Zhong, Y. Zhu, and Y. Hu, 2013: Contributions of barotropic energy conversion to northwest Pacific tropical cyclone activity during ENSO. Mon. Wea. Rev., 141, 13371346, https://doi.org/10.1175/MWR-D-12-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, X., H. Zhao, X. Li, G. B. Raga, C. Wang, and Q. Li, 2020: Modulation of boreal extended summer tropical cyclogenesis over the northwest Pacific by the quasi-biweekly oscillation under different El Niño–southern oscillation phases. Int. J. Climatol., 40, 858873, https://doi.org/10.1002/joc.6244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C., Y. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate Dyn., 47, 25872600, https://doi.org/10.1007/s00382-016-2986-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., P. S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312, https://doi.org/10.1175/JCLI-D-13-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., C. Zhang, S. Yang, D. Chen, and S. He, 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 24552465, https://doi.org/10.1007/s00382-017-4022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., J. Boucharel, and I. I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285, https://doi.org/10.1038/nature13958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, Z., Y. Chikamoto, J.-J. Luo, and T. Mochizuki, 2018: Ocean impacts on Australian interannual to decadal precipitation variability. Climate, 6, 61, https://doi.org/10.3390/cli6030061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, https://doi.org/10.1175/2010JCLI3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: El Niño–Southern Oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J. Climate, 24, 12521263, https://doi.org/10.1175/2010JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and E. S. Blake, 2013: North-central Pacific tropical cyclones: Impacts of El Niño–Southern Oscillation and the Madden–Julian oscillation. J. Climate, 26, 77207733, https://doi.org/10.1175/JCLI-D-12-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. P. Cangialosi, 2018: Have we reached the limits of predictability for tropical cyclone track forecasting? Bull. Amer. Meteor. Soc., 99, 22372243, https://doi.org/10.1175/BAMS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. H., and N. C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., R. Ding, J. Li, Y. Xu, and J. Li, 2018: Asymmetric response of predictability of East Asian summer monsoon to ENSO. SOLA, 14, 5256, https://doi.org/10.2151/sola.2018-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, https://doi.org/10.1175/JAS3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Fu, X. Ge, B. Wang, and M. Peng, 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30, 2122, https://doi.org/10.1029/2003GL018556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S. D. Schubert, O. Reale, A. M. Molod, M. J. Suarez, and B. M. Auer, 2016: Large-scale controls on Atlantic tropical cyclone activity on seasonal time scales. J. Climate, 29, 67276749, https://doi.org/10.1175/JCLI-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Huang, and G.-H. Chen, 2019: Impacts of the combined modes of the tropical Indo-Pacific sea surface temperature anomalies on the tropical cyclone genesis over the western North Pacific. Int. J. Climatol., 39, 21082119, https://doi.org/10.1002/joc.5938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. J., G. Wang, and D. Dommenget, 2018: May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña–like cooling? Climate Dyn., 50, 13351351, https://doi.org/10.1007/s00382-017-3688-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., and J. Y. Yu, 2017: Climate impacts of the Atlantic multidecadal oscillation simulated in the CMIP5 models: A re-evaluation based on a revised index. Geophys. Res. Lett., 44, 38673876, https://doi.org/10.1002/2017GL072681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, https://doi.org/10.1175/2010JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, https://doi.org/10.1175/2010JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., S. I. An, and J. S. Kug, 2017: Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dyn., 49, 37873798, https://doi.org/10.1007/s00382-017-3538-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2014: The impact of the El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328, https://doi.org/10.1175/JCLI-D-13-00687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sang, Y., V. P. Singh, and K. Xu, 2019: Evolution of IOD–ENSO relationship at multiple time scales. Theor. Appl. Climatol., 136, 13031309, https://doi.org/10.1007/s00704-018-2557-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899, https://doi.org/10.1175/MWR-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135, 33463361, https://doi.org/10.1175/MWR3503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, https://doi.org/10.1175/2010MWR3315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and S. K. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, https://doi.org/10.1029/2009GL041469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. K. Lee, and D. B. Enfield, 2008: Atlantic warm pool acting as a link between Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity. Geochem. Geophys. Geosyst., 9, Q05V03, https://doi.org/10.1029/2007GC001809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and W. Cai, 2013: Climate-change impact on the 20th-century relationship between the southern annular mode and global mean temperature. Sci. Rep., 3, 2039, https://doi.org/10.1038/srep02039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, https://doi.org/10.1029/2008GL035586.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. W., and E. D. Maloney, 2018: Influence of the Madden–Julian oscillation and Caribbean low-level jet on east Pacific easterly wave dynamics. J. Atmos. Sci., 75, 11211141, https://doi.org/10.1175/JAS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M. C., K. H. Yeung, and W. L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Trans. Amer. Geophys. Union, 87, 537538, https://doi.org/10.1029/2006EO480001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y.-Y. Yang, and X. Cao, 2019: Respective and combined impacts of regional SST anomalies on tropical cyclogenesis in different sectors of the western North Pacific. J. Geophys. Res. Atmos., 124, 89178934, https://doi.org/10.1029/2019JD030736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, L. Pietrafesa, J. Morrison, and T. Karl, 2005: Climatology and interannual variability of North Atlantic hurricane tracks. J. Climate, 18, 53705381, https://doi.org/10.1175/JCLI3560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., W. Wang, B. Liu, and C. Zhu, 2019: Weakening of the El Niño amplitude since the late 1990s and its link to decadal change in the North Pacific climate. Int. J. Climatol., 39, 41254138, https://doi.org/10.1002/joc.6063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. C., X. Lin, and S. P. Xie, 2017: A transbasin mode of interannual variability of the Central American gap winds: Seasonality and large-scale forcing. J. Climate, 30, 82238235, https://doi.org/10.1175/JCLI-D-17-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and C. Li, 2008: Decadal variability of the IOD–ENSO relationship. Sci. Bull., 53, 17451752, https://doi.org/10.1007/s11434-008-0196-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of east Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/jmsj.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden–Julian Oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 14131429, https://doi.org/10.1175/JAMC-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, P. J. Klotzbach, and G. B. Raga, 2018a: Impact of the extended boreal summer intraseasonal oscillation on western North Pacific tropical cloud cluster genesis productivity. J. Climate, 31, 91759191, https://doi.org/10.1175/JCLI-D-18-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Duan, G. B. Raga, and P. J. Klotzbach, 2018b: Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 81638179, https://doi.org/10.1175/JCLI-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, G. B. Raga, P. J. Klotzbach, and L. Wu, 2019a: Recent decrease in genesis productivity of tropical cloud clusters over the western North Pacific. Climate Dyn., 52, 58195831, https://doi.org/10.1007/s00382-018-4477-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, and P. J. Klotzbach, 2019b: Recent strengthening of the relationship between the western North Pacific monsoon and western North Pacific tropical cyclone activity during the boreal summer. J. Climate, 32, 82838299, https://doi.org/10.1175/JCLI-D-19-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., R. Saravanan, and P. Chang, 2012: Influence of mean flow on the ENSO–vertical wind shear relationship over the northern tropical Atlantic. J. Climate, 25, 858864, https://doi.org/10.1175/JCLI-D-11-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 327 0 0
Full Text Views 2751 1080 39
PDF Downloads 642 146 26