Wind Spatial Structure Triggers ENSO’s Oceanic Warm Water Volume Changes

S. Neske School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
ARC Centre of Excellence for Climate System Science, Monash University, Melbourne, Australia
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by S. Neske in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8970-4589
,
S. McGregor School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
ARC Centre of Excellence for Climate Extremes, Monash University, Melbourne, Australia

Search for other papers by S. McGregor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3222-7042
,
M. Zeller School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
ARC Centre of Excellence for Climate System Science, Monash University, Melbourne, Australia
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by M. Zeller in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1911-7500
, and
D. Dommenget School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
ARC Centre of Excellence for Climate Extremes, Monash University, Melbourne, Australia

Search for other papers by D. Dommenget in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5129-7719
Restricted access

Abstract

This study demonstrates that the generalization that strong anomalous equatorial Pacific westerly (easterly) winds during El Niño (La Niña) events display strong adjusted warm water volume (WWV) discharges (recharges) is often incorrect. Using ocean model simulations, we categorize the oceanic adjusted responses to strong anomalous equatorial winds into two categories: (i) transitioning (consistent with the above generalization) and (ii) neutral adjusted responses (with negligible WWV recharge and discharge). During the 1980–2016 period only 47% of strong anomalous equatorial winds are followed by transitioning adjusted responses, while the remaining are followed by neutral adjusted responses. Moreover, 55% (only 30%) of the strongest winds lead to transitioning adjusted responses during the pre-2000 (post-2000) period in agreement with the previously reported post-2000 decline of WWV lead time to El Niño–Southern Oscillation (ENSO) events. The prominent neutral adjusted WWV response is shown to be largely excited by anomalous wind stress forcing with a weaker curl (on average consistent with a higher ratio of off-equatorial to equatorial wind events) and weaker Rossby wave projection than the transitioning adjusted response. We also identify a prominent ENSO phase asymmetry where strong anomalous equatorial westerly winds (i.e., El Niño events) are roughly 1.6 times more likely to strongly discharge WWV than strong anomalous equatorial easterly winds (i.e., La Niña events) are to strongly recharge WWV. This ENSO phase asymmetry may be added to the list of mechanisms proposed to explain why El Niño events have a stronger tendency to be followed by La Niña events than vice versa.

ORCID: 0000-0001-8970-4589.

ORCID: 0000-0003-3222-7042.

ORCID: 0000-0003-1911-7500.

ORCID: 0000-0002-5129-7719.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0040.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Neske, sneske@geomar.de

Abstract

This study demonstrates that the generalization that strong anomalous equatorial Pacific westerly (easterly) winds during El Niño (La Niña) events display strong adjusted warm water volume (WWV) discharges (recharges) is often incorrect. Using ocean model simulations, we categorize the oceanic adjusted responses to strong anomalous equatorial winds into two categories: (i) transitioning (consistent with the above generalization) and (ii) neutral adjusted responses (with negligible WWV recharge and discharge). During the 1980–2016 period only 47% of strong anomalous equatorial winds are followed by transitioning adjusted responses, while the remaining are followed by neutral adjusted responses. Moreover, 55% (only 30%) of the strongest winds lead to transitioning adjusted responses during the pre-2000 (post-2000) period in agreement with the previously reported post-2000 decline of WWV lead time to El Niño–Southern Oscillation (ENSO) events. The prominent neutral adjusted WWV response is shown to be largely excited by anomalous wind stress forcing with a weaker curl (on average consistent with a higher ratio of off-equatorial to equatorial wind events) and weaker Rossby wave projection than the transitioning adjusted response. We also identify a prominent ENSO phase asymmetry where strong anomalous equatorial westerly winds (i.e., El Niño events) are roughly 1.6 times more likely to strongly discharge WWV than strong anomalous equatorial easterly winds (i.e., La Niña events) are to strongly recharge WWV. This ENSO phase asymmetry may be added to the list of mechanisms proposed to explain why El Niño events have a stronger tendency to be followed by La Niña events than vice versa.

ORCID: 0000-0001-8970-4589.

ORCID: 0000-0003-3222-7042.

ORCID: 0000-0003-1911-7500.

ORCID: 0000-0002-5129-7719.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0040.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Neske, sneske@geomar.de

Supplementary Materials

    • Supplemental Materials (PDF 453.60 KB)
Save
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosc, C., and T. Delcroix, 2008: Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J. Geophys. Res., 113, C06003, https://doi.org/10.1029/2007JC004613.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J. P., S. Cravatte, and C. Menkes, 2003: Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J. Geophys. Res., 108, 3311, https://doi.org/10.1029/2002JC001760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 13721385, https://doi.org/10.1175/JPO-D-13-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Elsevier, 324 pp.

  • Clarke, A. J., and X. Zhang, 2019: On the physics of the warm water volume and El Niño/La Niña predictability. J. Phys. Oceanogr., 49, 15411560, https://doi.org/10.1175/JPO-D-18-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., S. Van Gorder, and G. Colantuono, 2007: Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37, 10771091, https://doi.org/10.1175/JPO3035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, G., 1965: A survey of finite-difference approximations to the primitive equations. Mon. Wea. Rev., 93 (1), 110, https://doi.org/10.1175/1520-0493(1965)093<0001:ASOFDA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, C., M. J. McPhaden, F. Wang, and S. Hu, 2019: Quantifying the role of oceanic feedbacks on ENSO asymmetry. Geophys. Res. Lett., 46, 21402148, https://doi.org/10.1029/2018GL081332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s: Decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, L10707, https://doi.org/10.1029/2012GL051740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huguenin, M. F., R. M. Holmes, and M. H. England, 2020: Key role of diabatic processes in regulating warm water volume variability over ENSO events. J. Climate, 33, 99459964, https://doi.org/10.1175/JCLI-D-20-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño–La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 55565563, https://doi.org/10.1002/2015GL064853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between warm water volume and the El Niño Southern Oscillation. Climate Dyn., 52, 29232942, https://doi.org/10.1007/s00382-018-4313-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, M. Lengaigne, and I. Suresh, 2020: Relevance of relative sea surface temperature for tropical rainfall interannual variability. Geophys. Res. Lett., 47, e2019GL086182, https://doi.org/10.1029/2019GL086182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1991: Can reflected extra-equatorial Rossby waves drive ENSO? J. Phys. Oceanogr., 21, 444452, https://doi.org/10.1175/1520-0485(1991)021<0444:CREERW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kumar, B. P., J. Vialard, M. Lengaigne, V. S. N. Murty, M. J. McPhaden, M. F. Cronin, F. Pinsard, and K. G. Reddy, 2013: TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Climate Dyn., 40, 20492071, https://doi.org/10.1007/s00382-012-1455-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loughran, T. F., S. E. Perkins-Kirkpatrick, and L. V. Alexander, 2017: Understanding the spatio-temporal influence of climate variability on Australian heatwaves. Int. J. Climatol., 37, 39633975, https://doi.org/10.1002/joc.4971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, https://doi.org/10.1175/2007JCLI1412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, F. F. Jin, and W. S. Kessler, 2016: Charging El Niño with off-equatorial westerly wind events. Climate Dyn., 47, 11111125, https://doi.org/10.1007/s00382-015-2891-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2001: Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31, 13241345, https://doi.org/10.1175/1520-0485(2001)031<1324:IVIWWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and A. Arakawa, 1976: Numerical methods used in atmospheric models. GARP Publications Series 17, 70 pp.

  • Neske, S., 2019: Understanding the warm water volume precursor of ENSO events. Doctoral dissertation, Monash University, https://bridges.monash.edu/articles/Understanding_the_Warm_Water_Volume_Precursor_of_ENSO_events/11923563.

  • Neske, S., and S. McGregor, 2018: Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys. Res. Lett., 45, 15771585, https://doi.org/10.1002/2017GL076439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, S. J., S. McGregor, A. Sen Gupta, and M. H. England, 2017: Future changes to El Niño–Southern Oscillation temperature and precipitation teleconnections. Geophys. Res. Lett., 44, 10 60810 616, https://doi.org/10.1002/2017GL074509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. Du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., and F. P. Delage, 2018: El Niño–Southern Oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J. Climate, 31, 61896207, https://doi.org/10.1175/JCLI-D-18-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. P. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., and Coauthors, 2019: Dynamics and predictability of the El Niño–Southern Oscillation: An Australian perspective on progress and challenges. Bull. Amer. Meteor. Soc., 100, 403420, https://doi.org/10.1175/BAMS-D-18-0057.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and T. Delcroix, 2013: Eastern and central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep-Sea Res. I, 82, 3243, https://doi.org/10.1016/j.dsr.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. R., 1995: An improved system for tropical ocean subsurface temperature analyses. J. Atmos. Oceanic Technol., 12, 850870, https://doi.org/10.1175/1520-0426(1995)012<0850:AISFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 2013: Regional Oceanography: An Introduction. Elsevier, 422 pp.

  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14, 98115, https://doi.org/10.1175/1520-0442(2001)014<0098:AUOMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

    • Crossref
    • Export Citation
  • Weisberg, R. H., and C. Z. Wang, 1997: A western Pacific oscillator paradigm for the El Nino Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, A., and N. J. Holbrook, 2011: A Bayesian forecast model of Australian region tropical cyclone formation. J. Climate, 24, 61146131, https://doi.org/10.1175/2011JCLI4231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeller, M., S. McGregor, and P. Spence, 2019: Hemispheric asymmetry of the Pacific shallow meridional overturning circulation. J. Geophys. Res. Oceans, 124, 57655786, https://doi.org/10.1029/2018JC014840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., R. J. Greatbatch, and M. Claus, 2017: Interannual variability of tropical Pacific sea level from 1993 to 2014. J. Geophys. Res. Oceans, 122, 602616, https://doi.org/10.1002/2016JC012347.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 347 0 0
Full Text Views 1322 741 67
PDF Downloads 498 87 13