Decomposing the Drivers of Polar Amplification with a Single-Column Model

Matthew Henry College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Matthew Henry in
Current site
Google Scholar
PubMed
Close
,
Timothy M. Merlis Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
,
Nicholas J. Lutsko Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California

Search for other papers by Nicholas J. Lutsko in
Current site
Google Scholar
PubMed
Close
, and
Brian E. J. Rose Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian E. J. Rose in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0178.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Henry, m.henry@exeter.ac.uk

Abstract

The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0178.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Henry, m.henry@exeter.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 276.22 KB)
Save
  • Abbot, D. S., and E. Tziperman, 2008: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, https://doi.org/10.1029/2007GL032286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and E. van der Linden, 2013: The changing seasonal climate in the Arctic. Sci. Rep., 3, 1556, https://doi.org/10.1038/srep01556.

  • Cronin, T. W., and M. F. Jansen, 2016: Analytic radiative-advective equilibrium as a model for high-latitude climate. Geophys. Res. Lett., 43, 449457, https://doi.org/10.1002/2015GL067172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/GMD-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, https://doi.org/10.1175/JCLI-D-15-0424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., B. T. Anderson, and S. Bordoni, 2017: Atmospheric eddies mediate lapse rate feedback and Arctic amplification. J. Climate, 30, 92139224, https://doi.org/10.1175/JCLI-D-16-0706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Po-Chedley, H. K. Singh, S. Hay, and P. J. Kushner, 2020: Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. npj Climate Atmos. Sci., 3, 41, https://doi.org/10.1038/S41612-020-00146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Henry, M., and T. M. Merlis, 2020: Forcing dependence of atmospheric lapse rate changes dominates residual polar warming in solar radiation management climate scenarios. Geophys. Res. Lett., 47, e2020GL087929, https://doi.org/10.1029/2020GL087929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jucker, M., and E. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laliberté, F., and P. Kushner, 2013: Isentropic constraints by midlatitude surface warming on the Arctic midtroposphere. Geophys. Res. Lett., 40, 606611, https://doi.org/10.1029/2012GL054306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., 2020: Radiative kernels for Isca v1.0. Zenodo, https://doi.org/10.5281/zenodo.4282681.

    • Crossref
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, https://doi.org/10.1007/s00382-008-0425-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 55295554, https://doi.org/10.1029/JC085iC10p05529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, https://doi.org/10.1175/JCLI-D-11-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., M. F. Jansen, and T. W. Cronin, 2015: Conceptual model analysis of the influence of temperature feedbacks on polar amplification. Geophys. Res. Lett., 42, 95619570, https://doi.org/10.1002/2015GL065889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E., 2018: CLIMLAB: A Python toolkit for interactive, process oriented climate modeling. J. Open Source Software, 3, 659, https://doi.org/10.21105/joss.00659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2019: LongRunMIP: Motivation and design for a large collection of millennial-length AO-GCM simulations. Bull. Amer. Meteor. Soc., 100, 98619869, https://doi.org/10.1175/BAMS-D-19-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., and M. Biasutti, 2020: Polar amplification as an inherent response of a circulating atmosphere: Results from the TRACMIP aquaplanets. Geophys. Res. Lett., 47, e2019GL086771, https://doi.org/10.1029/2019GL086771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, https://doi.org/10.1029/2012GL051598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Tan, 2018: Testing latitudinally dependent explanations of the circulation response to increased CO2 using aquaplanet models. Geophys. Res. Lett., 45, 98619869, https://doi.org/10.1029/2018GL078974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, https://doi.org/10.1175/JCLI-D-12-00696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Huang, 2020: Understanding the atmospheric temperature adjustment to CO2 perturbation at the process level. J. Climate, 33, 787803, https://doi.org/10.1175/JCLI-D-19-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 849 0 0
Full Text Views 2270 677 68
PDF Downloads 1533 297 27