• Ashley, W. S., A. M. Haberlie, and V. A. Gensini, 2020: Reduced frequency and size of late-twenty-first-century snowstorms over North America. Nat. Climate Change, 10, 539544, https://doi.org/10.1038/s41558-020-0774-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773, https://doi.org/10.3402/tellusa.v48i1.11632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, https://doi.org/10.1175/WAF-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239, https://doi.org/10.1007/BF00198617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burakowski, E. A., C. P. Wake, B. Braswell, and D. P. Brown, 2008: Trends in wintertime climate in the northeastern United States: 1965–2005. J. Geophys. Res., 113, D20114, https://doi.org/10.1029/2008JD009870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cedilnik, J., D. Carrer, J.-F. Mahfouf, and J.-L. Roujean, 2012: Impact assessment of daily satellite-derived surface albedo in a limited-area NWP model. J. Appl. Meteor. Climatol., 51, 18351854, https://doi.org/10.1175/JAMC-D-11-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, D., C. Merinsky, and M. Lawson, 2008: Climatology of surface cyclone tracks associated with large central and eastern U.S. snowstorms, 1950–2000. Mon. Wea. Rev., 136, 31933202, https://doi.org/10.1175/2008MWR2324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and D. Changnon, 2005: Snowstorm catastrophes in the United States. Global Environ. Change, 6B, 158166, https://doi.org/10.1016/j.hazards.2006.06.001.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and D. Changnon, 2006: A spatial and temporal analysis of damaging snowstorms in the United States. Nat. Hazards, 37, 373389, https://doi.org/10.1007/s11069-005-6581-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., D. Changnon, and T. R. Karl, 2006: Temporal and spatial characteristics of snowstorms in the contiguous United States. J. Appl. Meteor. Climatol., 45, 11411155, https://doi.org/10.1175/JAM2395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-A., H.-H. Hsu, C.-C. Hong, P.-G. Chiu, C.-Y. Tu, S.-J. Lin, and A. Kitoh, 2019: Seasonal precipitation change in the western North Pacific and East Asia under global warming in two high-resolution AGCMs. Climate Dyn., 53, 55835605, https://doi.org/10.1007/s00382-019-04883-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Yang, Q. Bao, and W.-C. Wang, 2017: Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing. Climate Dyn., 51, 39853998, https://doi.org/10.1007/s00382-017-3691-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W.-C. Wang, L. Tao, H.-H. Hsu, C.-Y. Tu, and C.-T. Cheng, 2019: Extreme snow events along the coast of the northeast United States: Analysis of observations and HiRAM simulations. J. Climate, 32, 75617574, https://doi.org/10.1175/JCLI-D-18-0874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, https://doi.org/10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US east coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., and et al. , 2017a: Variability of hydrological extreme events in East Asia and their dynamical control: A comparison between observations and two high-resolution global climate models. Climate Dyn., 48, 745766, https://doi.org/10.1007/s00382-016-3108-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., H.-H. Hsu, A. Duchez, and C.-Y. Tu, 2017b: Projection in snowfall characteristics over the European Alps and its sensitivity to the SST changes: Results from a 50 km resolution AGCM. Atmos. Sci. Lett., 18, 261267, https://doi.org/10.1002/asl.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., O. N. Bulygina, X. Yin, R. S. Vose, S. K. Gulev, I. Hanssen-Bauer, and E. Førland, 2016: Recent changes in the frequency of freezing precipitation in North America and northern Eurasia. Environ. Res. Lett., 11, 045007, https://doi.org/10.1088/1748-9326/11/4/045007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and et al. , 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett., 2, 6164, https://doi.org/10.3178/hrl.2.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and Y.-T. Chen, 2020: Simulation and projection of circulations associated with atmospheric rivers along the North American northeast coast. J. Climate, 33, 56735695, https://doi.org/10.1175/JCLI-D-19-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., Y.-H. Chang, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016a: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res. Atmos., 121, 13 97313 988, https://doi.org/10.1002/2016JD025643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, and C.-Y. Tu, 2016b: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part I: Over Taiwan. Terr. Atmos. Oceanic Sci., 27, 659671, https://doi.org/10.3319/TAO.2016.05.02.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., P.-H. Huang, Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2019: Dynamical downscaling simulation and future projection of extreme precipitation activities in Taiwan during the mei-yu seasons. J. Meteor. Soc. Japan, 97, 481499, https://doi.org/10.2151/jmsj.2019-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. J. Norman, 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jeong, D. I., and L. Sushama, 2018: Rain-on-snow events over North America based on two Canadian regional climate models. Climate Dyn., 50, 303316, https://doi.org/10.1007/s00382-017-3609-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, C.-Y., and G. M. Lackmann, 2019: Extratropical transition of Hurricane Irene (2011) in a changing climate. J. Climate, 32, 48474871, https://doi.org/10.1175/JCLI-D-18-0558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, C.-Y., H.-J. Shin, C. J. Jang, and H.-J. Kim, 2015: Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis. Asia-Pac. J. Atmos. Sci., 51, 7789, https://doi.org/10.1007/s13143-015-0061-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, https://doi.org/10.1029/2009JD011803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. Final Report of the ICCAP, Research Institute for Humanity and Nature (RIHN), 4 pp.

  • Kocin, P. J., and L. W. Uccellini, 2004: A snowfall impact scale derived from northeast storm snowfall distributions. Bull. Amer. Meteor. Soc., 85, 177194, https://doi.org/10.1175/BAMS-85-2-Kocin.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., B. K. Bhattacharya, R. Nigam, C. M. Kishtawal, and P. K. Pal, 2014: Impact of Kalpana-1 derived land surface albedo on short-range weather forecasting over the Indian subcontinent. J. Geophys. Res. Atmos., 119, 27642780, https://doi.org/10.1002/2013JD020534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., 2018: Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2. Climate Dyn., 51, 46014617, https://doi.org/10.1007/s00382-016-3499-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., H. Nakamura, K. Nishii, and T. Miyasaka, 2014: A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dyn., 42, 27452761, https://doi.org/10.1007/s00382-014-2087-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and B. K. Hansen, 2011: Simulated changes in the freezing rain climatology of North America under global warming using a coupled climate model. Atmos.–Ocean, 49, 289295, https://doi.org/10.1080/07055900.2011.607492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and et al. , 2016: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., R. Healy, and L. M. Druyan, 2009a: Quantifying the sensitivity of simulated climate change to model configuration. Climatic Change, 92, 275298, https://doi.org/10.1007/s10584-008-9494-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., R. Healy, and L. M. Druyan, 2009b: Investigation of Hurricane Katrina characteristics for future, warmer climates. Climate Res., 39, 7586, https://doi.org/10.3354/cr00801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., G. M. Lackmann, A. Aiyyer, and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, https://doi.org/10.1175/JCLI-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and et al. , 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, https://doi.org/10.1175/JCLI-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. east coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012a: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and et al. , 2012b: Global Historical Climatology Network–Daily (GHCN-Daily), version 3.22. NOAA National Climatic Data Center, accessed 19 September 2017, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Michaelis, A. C., J. Willison, G. M. Lackmann, and W. A. Robinson, 2017: Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J. Climate, 30, 69056925, https://doi.org/10.1175/JCLI-D-16-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Meteorological Research Institute, Tech. Rep. 56, 28 pp., https://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_56/56.html.

  • Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167171, https://doi.org/10.2151/sola.2014-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2014: Contrasting responses of mean and extreme snowfall to climate change. Nature, 512, 416418, https://doi.org/10.1038/nature13625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, https://doi.org/10.1016/j.jhydrol.2006.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, https://doi.org/10.1175/JAMC-D-11-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and J. L. Matthews, 2015: Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards, 77, 18291851, https://doi.org/10.1007/s11069-015-1678-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart, R. A., and G. A. Isaac, 1999: Freezing precipitation in Canada. Atmos.–Ocean, 37, 87102, https://doi.org/10.1080/07055900.1999.9649622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2016: The realization of extreme tornadic storm events under future anthropogenic climate change. J. Climate, 29, 52515265, https://doi.org/10.1175/JCLI-D-15-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., P.-Y. Huang, C.-Y. Tu, C.-T. Chen, T.-P. Tzeng, and C.-T. Cheng, 2016: Present simulation and future typhoon activity projection over western North Pacific and Taiwan/east coast of China in 20-km HIRAM climate model. Terr. Atmos. Oceanic Sci., 27, 687703, https://doi.org/10.3319/TAO.2016.06.13.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., 2018: Projecting changes in societally impactful northeastern U.S. snowstorms. Geophys. Res. Lett., 45, 12 06712 075, https://doi.org/10.1029/2018GL079820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 687 687 82
Full Text Views 126 126 20
PDF Downloads 152 152 23

Extreme Snow Events along the Coast of the Northeast United States: Potential Changes due to Global Warming

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
  • | 2 Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
  • | 3 National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
  • | 4 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Winter extreme snowstorm events along the coast of the northeast United States have significant impacts on social and economic activities, and their potential changes under global warming are of great concern. Here, we adopted the pseudo–global warming approach to investigate the responses of 93 events identified in our previous observational analysis. The study was conducted by contrasting two sets of WRF simulations for each event: the first set driven by the ERA-Interim reanalysis and the second set by that data superimposed with mean-climate changes simulated from HiRAM historical (1980–2004) and future (2075–99; RCP8.5) runs. Results reveal that the warming together with increased moisture tends to decrease the snowfall along the coast but increase the rainfall throughout the region. For example, the number of events having daily snow water equivalent larger than 10 mm day−1 at Boston, Massachusetts; New York City, New York; Philadelphia, Pennsylvania; and Washington, D.C., is decreased by 47%, 46%, 30%, and 33%, respectively. The compensating changes in snowfall and rainfall lead to a total-precipitation increase in the three more-southern cities but a decrease in Boston. In addition, the southwestward shift of regional precipitation distribution is coherent with the enhancement (reduction) of upward vertical motion in the south (north) and the movement of cyclone centers (westward in 58% of events and southward in 72%). Finally, perhaps more adversely, because of the northward retreat of the 0°C line and the expansion of the near-freezing zone, the number of events with mixed rain and snow and freezing precipitation in the north (especially the inland area) is increased.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0197.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu

Abstract

Winter extreme snowstorm events along the coast of the northeast United States have significant impacts on social and economic activities, and their potential changes under global warming are of great concern. Here, we adopted the pseudo–global warming approach to investigate the responses of 93 events identified in our previous observational analysis. The study was conducted by contrasting two sets of WRF simulations for each event: the first set driven by the ERA-Interim reanalysis and the second set by that data superimposed with mean-climate changes simulated from HiRAM historical (1980–2004) and future (2075–99; RCP8.5) runs. Results reveal that the warming together with increased moisture tends to decrease the snowfall along the coast but increase the rainfall throughout the region. For example, the number of events having daily snow water equivalent larger than 10 mm day−1 at Boston, Massachusetts; New York City, New York; Philadelphia, Pennsylvania; and Washington, D.C., is decreased by 47%, 46%, 30%, and 33%, respectively. The compensating changes in snowfall and rainfall lead to a total-precipitation increase in the three more-southern cities but a decrease in Boston. In addition, the southwestward shift of regional precipitation distribution is coherent with the enhancement (reduction) of upward vertical motion in the south (north) and the movement of cyclone centers (westward in 58% of events and southward in 72%). Finally, perhaps more adversely, because of the northward retreat of the 0°C line and the expansion of the near-freezing zone, the number of events with mixed rain and snow and freezing precipitation in the north (especially the inland area) is increased.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0197.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu

Supplementary Materials

    • Supplemental Materials (PDF 234.50 KB)
Save