Impacts of Low-Frequency Internal Climate Variability and Greenhouse Warming on El Niño–Southern Oscillation

Benjamin Ng Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
CSIRO Climate Science Centre, Aspendale, Victoria, Australia

Search for other papers by Benjamin Ng in
Current site
Google Scholar
PubMed
Close
,
Wenju Cai Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
CSIRO Climate Science Centre, Aspendale, Victoria, Australia
Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, China
Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
,
Tim Cowan Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Tim Cowan in
Current site
Google Scholar
PubMed
Close
, and
Daohua Bi CSIRO Climate Science Centre, Aspendale, Victoria, Australia

Search for other papers by Daohua Bi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Niño response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0232.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Ng, benjamin.ng@csiro.au

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Niño response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0232.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Ng, benjamin.ng@csiro.au

Supplementary Materials

    • Supplemental Materials (PDF 2.07 MB)
Save
  • An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aronson, R. B., W. F. Precht, I. G. Macintyre, and T. J. T. Murdoch, 2000: Coral bleach-out in Belize. Nature, 405, 36, https://doi.org/10.1038/35011132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brainard, R. E., and Coauthors, 2018: Ecological impacts of the 2015/16 El Niño in the central equatorial Pacific. Bull. Amer. Meteor. Soc., 99 (1), S21S26, https://doi.org/10.1175/BAMS-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, T. Geng, L. Wu, A. Santoso, and M. J. McPhaden, 2020: Butterfly effect and a self-modulating El Niño response to global warming. Nature, 585, 6873, https://doi.org/10.1038/s41586-020-2641-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., T. C. Piechota, J. A. Dracup, and T. A. McMahon, 1998: El Niño/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. J. Hydrol., 204, 138149, https://doi.org/10.1016/S0022-1694(97)00121-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, B., G. Reverdin, and C. Maes, 1999: Vertical structure of an OGCM simulation of the equatorial Pacific Ocean in 1985–94. J. Phys. Oceanogr., 29, 15421570, https://doi.org/10.1175/1520-0485(1999)029<1542:VSOAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, B., S. Thual, S. Yeh, S. An, B. Moon, and B. S. Giese, 2009: Low-frequency variability of temperature in the vicinity of the equatorial Pacific thermocline in SODA: Role of equatorial wave dynamics and ENSO asymmetry. J. Climate, 22, 57835795, https://doi.org/10.1175/2009JCLI2764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., J. Mejia, N. Ordinola, and J. Boustead, 2009: Synoptic variability of rainfall and cloudiness along the coasts of northern Peru and Ecuador during the 1997/98 El Niño event. Mon. Wea. Rev., 137, 116136, https://doi.org/10.1175/2008MWR2191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glynn, P. W., and W. H. de Weerdt, 1991: Elimination of two reef-building hydrocorals following the 1982–83 El Niño. Science, 253, 6971, https://doi.org/10.1126/science.253.5015.69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glynn, P. W., J. L. Maté, A. C. Baker, and M. O. Calderón, 2001: Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño–Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci., 69, 79109.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and R. G. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, https://doi.org/10.1175/2008JCLI2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2020: Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469, https://doi.org/10.1029/2019EF001469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, https://doi.org/10.1175/JCLI-D-12-00649.1.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, https://doi.org/10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño Events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, https://doi.org/10.1088/1748-9326/7/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D.E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, F., G. Ruecker, A. Hinrichs, and A. A. Hoffmann, 2001: Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437440, https://doi.org/10.1038/35106547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, https://doi.org/10.1007/s00382-015-2665-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vega-Westhoff, B., and R. L. Sriver, 2017: Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM. Sci. Rep., 7, 18047, https://doi.org/10.1038/s41598-017-18459-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, https://doi.org/10.1007/s00382-009-0716-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and C. M. Patricola, 2018: Diversity of ENSO events unified by convective threshold sea surface temperature: A nonlinear ENSO index. Geophys. Res. Lett., 45, 92369244, https://doi.org/10.1029/2018GL079203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., 2019: Indo-Pacific climate modes in warming climate: Consensus and uncertainty across model projections. Curr. Climate Change Rep., 5, 308321, https://doi.org/10.1007/s40641-019-00152-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, L.-H. Lv, and Z.-Q. Zhou, 2016: Inter-model uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J. Climate, 29, 72657279, https://doi.org/10.1175/JCLI-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to internal variability. Climate Dyn., 50, 40194035, https://doi.org/10.1007/s00382-017-3859-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 993 0 0
Full Text Views 2227 990 66
PDF Downloads 1077 218 24