Global Near-Surface Wind Speed Changes over the Last Decades Revealed by Reanalyses and CMIP6 Model Simulations

Kaiqiang Deng Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Kaiqiang Deng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6587-0902
,
Cesar Azorin-Molina Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE-CSIC), Valencia, Spain

Search for other papers by Cesar Azorin-Molina in
Current site
Google Scholar
PubMed
Close
,
Lorenzo Minola Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Lorenzo Minola in
Current site
Google Scholar
PubMed
Close
,
Gangfeng Zhang State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing, China

Search for other papers by Gangfeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Deliang Chen Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Deliang Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including hydrological cycles, wind energy production, and air pollution, but what drives its multidecadal changes is still unclear. Using reanalysis datasets and model simulations from phase 6 of the Coupled Model Intercomparison Projection (CMIP6), this study investigates recent trends in the annual mean NWS. The results show that the Northern Hemisphere (NH) terrestrial NWS experienced significant (p < 0.1) decreasing trends during 1980–2010, when the Southern Hemisphere (SH) ocean NWS was characterized by significant (p < 0.1) upward trends. However, during 2010–19, global NWS trends shifted in their sign: NWS trends over the NH land became positive, and trends over the SH tended to be negative. We propose that the strengthening of SH NWS during 1980–2010 was associated with an intensified Hadley cell over the SH, while the declining of NH land NWS could have been caused by changes in atmospheric circulation, alteration of vegetation and/or land use, and the accelerating Arctic warming. The CMIP6 model simulations further demonstrate that the greenhouse gas (GHG) warming plays an important role in triggering the NWS trends over the two hemispheres during 1980–2010 through modulating meridional atmospheric circulation. This study also points at the importance of anthropogenic GHG forcing and the natural Pacific decadal oscillation to the long-term trends and multidecadal variability in global NWS, respectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0310.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deliang Chen, deliang@gvc.gu.se

Abstract

Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including hydrological cycles, wind energy production, and air pollution, but what drives its multidecadal changes is still unclear. Using reanalysis datasets and model simulations from phase 6 of the Coupled Model Intercomparison Projection (CMIP6), this study investigates recent trends in the annual mean NWS. The results show that the Northern Hemisphere (NH) terrestrial NWS experienced significant (p < 0.1) decreasing trends during 1980–2010, when the Southern Hemisphere (SH) ocean NWS was characterized by significant (p < 0.1) upward trends. However, during 2010–19, global NWS trends shifted in their sign: NWS trends over the NH land became positive, and trends over the SH tended to be negative. We propose that the strengthening of SH NWS during 1980–2010 was associated with an intensified Hadley cell over the SH, while the declining of NH land NWS could have been caused by changes in atmospheric circulation, alteration of vegetation and/or land use, and the accelerating Arctic warming. The CMIP6 model simulations further demonstrate that the greenhouse gas (GHG) warming plays an important role in triggering the NWS trends over the two hemispheres during 1980–2010 through modulating meridional atmospheric circulation. This study also points at the importance of anthropogenic GHG forcing and the natural Pacific decadal oscillation to the long-term trends and multidecadal variability in global NWS, respectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0310.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deliang Chen, deliang@gvc.gu.se

Supplementary Materials

    • Supplemental Materials (PDF 858.06 KB)
Save
  • Alizadeh-Choobari, O., P. Zawar-Reza, and A. Sturman, 2014: The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmos. Res., 143, 328341, https://doi.org/10.1016/j.atmosres.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., S. Rehman, J. A. Guijarro, T. R. McVicar, L. Minola, D. Chen, and S. M. Vicente-Serrano, 2018a: Recent trends in wind speed across Saudi Arabia, 1978–2013: A break in the stilling. Int. J. Climatol., 38, e966e984, https://doi.org/10.1002/joc.5423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., J. Asin, T. R. McVicar, L. Minola, J. I. Lopez-Moreno, S. M. Vicente-Serrano, and D. Chen, 2018b: Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res., 203, 175188, https://doi.org/10.1016/j.atmosres.2017.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., S. Denvil, A. Caubel, and M. A. Foujols, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1534.

    • Crossref
    • Export Citation
  • Brázdil, R., A. Valík, P. Zahradníček, L. Řezníčková, R. Tolasz, and M. Možný, 2017: Wind-stilling in the light of wind speed measurements: The Czech experience. Climate Res., 74, 131143, https://doi.org/10.3354/cr01492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. Hartmann, 2013: On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. J. Climate, 26, 34503465, https://doi.org/10.1175/JCLI-D-12-00414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, Y. Tan, and S. He, 2018a: Global monsoon precipitation: Trends, leading modes, and associated drought and heat wave in the Northern Hemisphere. J. Climate, 31, 69476966, https://doi.org/10.1175/JCLI-D-17-0569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., M. Ting, S. Yang, and Y. Tan, 2018b: Increased frequency of summer extreme heat waves over Texas area tied to the amplification of Pacific zonal SST gradient. J. Climate, 31, 56295647, https://doi.org/10.1175/JCLI-D-17-0554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, P. Zhao, and Z. Wang, 2019: Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Climate, 32, 37613775, https://doi.org/10.1175/JCLI-D-18-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, D. Gu, A. Lin, and C. Li, 2020: Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn., 54, 37513764, https://doi.org/10.1007/s00382-020-05203-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. Wiley Interdiscip. Rev.: Climate Change, 8, e474, https://doi.org/10.1002/wcc.474.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Q., X. Sun, J. Yang, B. Pan, S. Zhao, and L. Wang, 2017: Dust storms in northern China: Long-term spatiotemporal characteristics and climate controls. J. Climate, 30, 66836700, https://doi.org/10.1175/JCLI-D-16-0795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., M. Xu, and Q. Hu, 2011: Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol., 31, 349358, https://doi.org/10.1002/joc.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., W. H. Schubert, D. E. Stevens, and H.-C. Kuo, 1989: Response of the Hadley circulation to convective forcing in the ITCZ. J. Atmos. Sci., 46, 29572973, https://doi.org/10.1175/1520-0469(1989)046<2957:ROTHCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., C. Zhou, and J. Liu, 2011: Observational evidence for the poleward expansion of the Hadley circulation. Adv. Atmos. Sci., 28, 3344, https://doi.org/10.1007/s00376-010-0032-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y., X. Xu, H. Liu, X. Dong, W. Wang, and G. Jia, 2017: The underestimated magnitude and decline trend in near-surface wind over China. Atmos. Sci. Lett., 18, 475483, https://doi.org/10.1002/asl.791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., R. Seager, D. M. W. Frierson, and X. Liu, 2015: Croll revisited: Why is the Northern Hemisphere warmer than the Southern Hemisphere? Climate Dyn., 44, 14571472, https://doi.org/10.1007/s00382-014-2147-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and K. Paik, 2015: Recent recovery of surface wind speed after decadal decrease: A focus on South Korea. Climate Dyn., 45, 16991712, https://doi.org/10.1007/s00382-015-2546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramm, G., N. Mölders, J. Cooney, and R. Dlugi, 2019: Near-surface wind-speed stilling in Alaska during 1984–2016 and its impact on the sustainability of wind power. J. Power Energy Eng., 7, 71124, https://doi.org/10.4236/jpee.2019.77006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, A., and P. K. Bhaskaran, 2020: Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Climate Dyn., 55, 26672687, https://doi.org/10.1007/s00382-020-05406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lyddon, C. E., J. M. Brown, N. Leonardi, and A. J. Plater, 2019: Increased coastal wave hazard generated by differential wind and wave direction in hyper-tidal estuaries. Estuarine Coastal Shelf Sci., 220, 131141, https://doi.org/10.1016/j.ecss.2019.02.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012a: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416-417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, R. Donohue, and T. G. Van Niel, 2012b: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology, 5, 381388, https://doi.org/10.1002/eco.1298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, H., D. Dong, G. Huang, K. Hu, Q. Tian, and Y. Gong, 2020: Evaluation of Northern Hemisphere surface wind speed and wind power density in multiple reanalysis datasets. Energy, 200, 117382, https://doi.org/10.1016/j.energy.2020.117382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., 2011: Tug of war on the jet stream. Nat. Climate Change, 1, 2931, https://doi.org/10.1038/nclimate1065.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2011: Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA, 108, 81678171, https://doi.org/10.1073/pnas.1019388108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2006: Winds of change? Projections of near-surface winds under climate change scenarios. Geophys. Res. Lett., 33, L11702, https://doi.org/10.1029/2006GL026000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, D. P., 2007: Wind run changes: The dominant factor affecting pan evaporation trends in Australia. J. Climate, 20, 33793394, https://doi.org/10.1175/JCLI4181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and S. Masson, 2017: Satellite observations of imprint of oceanic current on wind stress by air–sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 11391164, https://doi.org/10.5194/gmd-2018-82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and S. C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112, https://doi.org/10.1029/2009JD013713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., A. M. R. Bakker, H. W. van den Brink, R. Haarsma, A. Stepek, I. L. Wijnant, R. C. de Winter, 2015: Large-scale winds in the southern North Sea region: The wind part of the KNMI’14 climate change scenarios. Environ. Res. Lett., 10, 035004, https://doi.org/10.1088/1748-9326/10/3/035004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and S. P. Xie, 2011: Wave and anemometer-based sea-surface wind (WASWind) for climate change analysis. J. Climate, 24, 267285, https://doi.org/10.1175/2010JCLI3789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J. N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and Coauthors, 2017: Variation of strong dust storms events in northern China during 1978–2007. Atmos. Res., 183, 166172, https://doi.org/10.1016/j.atmosres.2016.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2004: The elementary Hadley circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Advances in Global Change Research Series, Vol. 21, Springer, 9–60, https://doi.org/10.1007/978-1-4020-2944-8_2.

    • Crossref
    • Export Citation
  • Wentz, F., L. Ricciardulli, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, https://doi.org/10.1126/science.1140746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wever, N., 2012: Quantifying trends in surface roughness and the effect on surface wind speed observations. J. Geophys. Res., 117, D11104, https://doi.org/10.1029/2011JD017118.

    • Search Google Scholar
    • Export Citation
  • Wohland, J., N. E. Omrani, D. Witthaut, and N. S. Keenlyside, 2019: Inconsistent wind speed trends in current twentieth century reanalyses. J. Geophys. Res. Atmos., 124, 19311940, https://doi.org/10.1029/2018JD030083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wohland, J., H. Bloomfield, D. Brayshaw, S. Pfenninger, and M. Wild, 2020: Understanding multidecadal variability for energy system studies: Can current 20th century reanalyses do the job? EGU General Assembly 2020, Online, EGU2020-3008, https://doi.org/10.5194/egusphere-egu2020-3008.

    • Crossref
    • Export Citation
  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Zhou, Z. Jiang, and L. Zou, 2019: Evaluation of near-surface wind speed changes during 1979 to 2011 over China based on five reanalysis datasets. Atmosphere, 10, 804, https://doi.org/10.3390/atmos10120804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2018: Global terrestrial stilling: Does Earth’s greening play a role? Environ. Res. Lett., 13, 124013, https://doi.org/10.1088/1748-9326/aaea84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, https://doi.org/10.1175/JPO-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., C. Azorin-Molina, P. Shi, D. Lin, J. A. Guijarro, F. Kong, and D. Chen, 2019: Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of northern China, 1982–2016. Agric. For. Meteor., 271, 102115, https://doi.org/10.1016/j.agrformet.2019.02.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. T., and K. C. Wang, 2020: Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J. Climate, 33, 39894008, https://doi.org/10.1175/JCLI-D-19-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. T., K. C. Wang, D. Chen, J. Li, and R. Dickinson, 2019: Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the Northern Hemisphere lands. J. Climate, 32, 74217435, https://doi.org/10.1175/JCLI-D-18-0691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C. W., J. Pan, and C. Y. Li, 2016: Global oceanic wind speed trends. Ocean Coastal Manage., 129, 1524, https://doi.org/10.1016/j.ocecoaman.2016.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, and I. R. Young, 2014: Changes in ocean surface wind with a focus on trends in regional and monthly mean values. Deep-Sea Res., 86, 5667, https://doi.org/10.1016/j.dsr.2014.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1569 0 0
Full Text Views 4160 1603 129
PDF Downloads 3478 946 89