Changes in North Atlantic Atmospheric Circulation in a Warmer Climate Favor Winter Flooding and Summer Drought over Europe

E. Rousi Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany

Search for other papers by E. Rousi in
Current site
Google Scholar
PubMed
Close
,
F. Selten Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by F. Selten in
Current site
Google Scholar
PubMed
Close
,
S. Rahmstorf Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

Search for other papers by S. Rahmstorf in
Current site
Google Scholar
PubMed
Close
, and
D. Coumou Institute for Environmental Studies, Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany

Search for other papers by D. Coumou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in atmospheric circulation under increasing greenhouse gas concentrations are important because of their implications for weather extremes and associated societal risks. However, uncertainties in models and future projections are still large and drivers behind circulation changes are not well understood. Particularly for Europe, a potential weakening of the Atlantic meridional overturning circulation (AMOC) is considered important as it affects SST patterns and ocean–atmosphere heat fluxes and, subsequently, European climate. Here we detect and characterize changes in atmospheric circulation patterns over the North Atlantic under increasing CO2 concentrations in simulations of a very high-resolution, fully coupled climate model (CM2.6) with a realistic representation of the AMOC. We use an objective clustering technique (self-organizing maps) and validate the model’s clusters against reanalysis data. We compare the frequency of those patterns in a CO2 doubling experiment, characterized by an AMOC decline, with those in a preindustrial run, and find statistically significant changes. The most robust findings are 1) a ~30% increase in zonal flow regimes in February, relevant for flood risk in northwestern Europe, and 2) a ~60% increase in anticyclonic (high pressure) circulation directly west of the United Kingdom in August, relevant for western and central European drought. A robust decrease in the frequency of Scandinavian blocking is also seen across most months and seasons. Despite the uncertainties regarding atmospheric circulation response to climate change, our findings contribute to the increasing evidence for the emergence of robust high-impact changes over Europe.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0311.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: E. Rousi, rousi@pik-potsdam.de

Abstract

Changes in atmospheric circulation under increasing greenhouse gas concentrations are important because of their implications for weather extremes and associated societal risks. However, uncertainties in models and future projections are still large and drivers behind circulation changes are not well understood. Particularly for Europe, a potential weakening of the Atlantic meridional overturning circulation (AMOC) is considered important as it affects SST patterns and ocean–atmosphere heat fluxes and, subsequently, European climate. Here we detect and characterize changes in atmospheric circulation patterns over the North Atlantic under increasing CO2 concentrations in simulations of a very high-resolution, fully coupled climate model (CM2.6) with a realistic representation of the AMOC. We use an objective clustering technique (self-organizing maps) and validate the model’s clusters against reanalysis data. We compare the frequency of those patterns in a CO2 doubling experiment, characterized by an AMOC decline, with those in a preindustrial run, and find statistically significant changes. The most robust findings are 1) a ~30% increase in zonal flow regimes in February, relevant for flood risk in northwestern Europe, and 2) a ~60% increase in anticyclonic (high pressure) circulation directly west of the United Kingdom in August, relevant for western and central European drought. A robust decrease in the frequency of Scandinavian blocking is also seen across most months and seasons. Despite the uncertainties regarding atmospheric circulation response to climate change, our findings contribute to the increasing evidence for the emergence of robust high-impact changes over Europe.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0311.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: E. Rousi, rousi@pik-potsdam.de

Supplementary Materials

    • Supplemental Materials (PDF 6.05 MB)
Save
  • Alexander, L. V., P. Uotila, N. Nicholls, and A. Lynch, 2010: A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century. J. Climate, 23, 11111126, https://doi.org/10.1175/2009JCLI2972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, D., and R. P. Allan, 2019: Seasonal changes in the North Atlantic cold anomaly: The influence of cold surface waters from coastal Greenland and warming trends associated with variations in subarctic sea ice cover. J. Geophys. Res. Oceans, 124, 90409052, https://doi.org/10.1029/2019JC015379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and Coauthors, 2013: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res. Atmos., 118, 39563971, https://doi.org/10.1002/jgrd.50231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Barker, L., J. Hannaford, K. Muchan, S. Turner, and S. Parry, 2016: The winter 2015/2016 floods in the UK: A hydrological appraisal. Weather, 71, 324333, https://doi.org/10.1002/wea.2822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and Coauthors, 2019: Changing climate both increases and decreases European river floods. Nature, 573, 108111, https://doi.org/10.1038/s41586-019-1495-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and F. Selten, 2009: “Mode of variability” and climate change. J. Climate, 22, 26392658, https://doi.org/10.1175/2008JCLI2517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, A. L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 10551068, https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelle, B., G. Dodet, G. Masselink, and T. Scott, 2017: A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe pressure anomaly. Geophys. Res. Lett., 44, 13841392, https://doi.org/10.1002/2016GL072379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. H., and N. C. Johnson, 2015: The continuum of wintertime Southern Hemisphere atmospheric teleconnection patterns. J. Climate, 28, 95079529, https://doi.org/10.1175/JCLI-D-14-00739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., C. Ma, C. Zheng, and A. M. W. Yau, 2016: Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett., 43, 22002208, https://doi.org/10.1002/2016GL068172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, and L. M. Polvani, 2020: Identifying a human signal in the North Atlantic warming hole. Nat. Commun., 11, 1540, https://doi.org/10.1038/s41467-020-15285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015a: Extreme rainfall in the United Kingdom during winter 2013/14: The role of atmospheric circulation and climate change. Bull. Amer. Meteor. Soc., 96, S46S50, https://doi.org/10.1175/BAMS-D-15-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015b: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett., 42, 10 79810 806, https://doi.org/10.1002/2015GL066669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Climate Change, 5, 4650, https://doi.org/10.1038/nclimate2468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortesi, N., V. Torralba, N. González-Reviriego, A. Soret, and F. J. Doblas-Reyes, 2019: Characterization of European wind speed variability using weather regimes. Climate Dyn., 53, 49614976, https://doi.org/10.1007/s00382-019-04839-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390406, https://doi.org/10.1007/s40641-019-00148-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2016: Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Climate, 29, 88238840, https://doi.org/10.1175/JCLI-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., T. N. Palmer, and S. Corti, 2012: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39, L21805, https://doi.org/10.1029/2012GL053284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 49304946, https://doi.org/10.1175/JCLI-D-12-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchez, A., and Coauthors, 2016: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabiano, F., H. M. Christensen, K. Strommen, P. Athanasiadis, A. Baker, R. Schiemann, and S. Corti, 2020: Euro-Atlantic weather regimes in the PRIMAVERA coupled climate simulations: Impact of resolution and mean state biases on model performance. Climate Dyn., 54, 50315048, https://doi.org/10.1007/s00382-020-05271-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabiano, F., V. Meccia, P. Davini, P. Ghinassi, and S. Corti, 2021: A regime view of future atmospheric circulation changes in northern mid-latitudes. Wea. Climate Dyn. Discuss., https://doi.org/10.5194/wcd-2020-37, in press.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., S. Corti, and M. Janousek, 2015: Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. Quart. J. Roy. Meteor. Soc., 141, 916924, https://doi.org/10.1002/qj.2411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fort, J., P. Letremy, and M. Cottrell, 2002: Advantages and drawbacks of the Batch Kohonen algorithm. Proc. European Symp. on Artificial Neural Networks (ESANN), Bruges, Belgium, 223–230.

  • Forzieri, G., and Coauthors, 2016: Multi-hazard assessment in Europe under climate change. Climatic Change, 137, 105119, https://doi.org/10.1007/s10584-016-1661-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., N. Skific, and S. J. Vavrus, 2018: North American weather regimes are becoming more persistent: Is Arctic amplification a factor? Geophys. Res. Lett., 45, 11 41411 422, https://doi.org/10.1029/2018GL080252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2020: Impact of the North Atlantic warming hole on sensible weather. J. Climate, 33, 42554271, https://doi.org/10.1175/JCLI-D-19-0636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and J. C. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 11891193, https://doi.org/10.1002/grl.50249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L. M., D. J. Brayshaw, and G. Zappa, 2019: The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. Climate Dyn., 53, 40954113, https://doi.org/10.1007/s00382-019-04776-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guèye, A. K., S. Janicot, A. Niang, S. Sawadogo, B. Sultan, A. Diongue-Niang, and S. Thiria, 2012: Weather regimes over Senegal during the summer monsoon season using self-organizing maps and hierarchical ascendant classification. Part II: Interannual time scale. Climate Dyn., 39, 22512272, https://doi.org/10.1007/s00382-012-1346-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. Selten, B. van den Hurk, W. Hazeleger, and X. Wang, 2009: Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys. Res. Lett., 36, L04705, https://doi.org/10.1029/2008GL036617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. Selten, and G. J. van Oldenborgh, 2013: Anthropogenic changes of the thermal and zonal flow structure over western Europe and eastern North Atlantic in CMIP3 and CMIP5 models. Climate Dyn., 41, 25772588, https://doi.org/10.1007/s00382-013-1734-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, and S. S. Drijfhout, 2015: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., J. García-Serrano, C. Prodhomme, O. Bellprat, P. Davini, and S. Drijfhout, 2019: Sensitivity of winter North Atlantic–European climate to resolved atmosphere and ocean dynamics. Sci. Rep., 9, 13358, https://doi.org/10.1038/s41598-019-49865-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handorf, D., and K. Dethloff, 2012: How well do state-of-the-art atmosphere–ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus, 64A, 19777, https://doi.org/10.3402/TELLUSA.V64i0.19777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Application to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. Johnson, D. Singh, D. Swain, B. Rajaratnam, and N. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huth, R., J. Kyselý, and L. Pokorná, 2000: A GCM simulation of heat waves, dry spells, and their relationships to circulation. Climatic Change, 46, 2960, https://doi.org/10.1023/A:1005633925903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., J. J.-M. Hirschi, B. Sinha, A. Duchez, J. P. Grist, and R. Marsh, 2018: The recent Atlantic cold anomaly: Causes, consequences, and related phenomena. Annu. Rev. Mar. Sci., 10, 475501, https://doi.org/10.1146/annurev-marine-121916-063102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667671, https://doi.org/10.1038/s41558-020-0819-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50, 26452673, https://doi.org/10.1175/1520-0469(1993)050<2645:MFRITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., and Coauthors, 2017: Global meteorological influences on the record UK rainfall of winter 2013-14. Environ. Res. Lett., 12, 074001, https://doi.org/10.1088/1748-9326/aa693c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2013: Essentials of the self-organizing map. Neural Network, 37, 5265, https://doi.org/10.1016/j.neunet.2012.09.018.

  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Climate Change, 10, 4853, https://doi.org/10.1038/s41558-019-0637-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., J. Runge, and D. Coumou, 2017: Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett., 44, 85928600, https://doi.org/10.1002/2017GL074696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., J. Cohen, V. Matthias, J. Runge, and D. Coumou, 2018: The different stratospheric influence on cold-extremes in Eurasia and North America. npj Climate Atmos. Sci., 1, 44, https://doi.org/10.1038/s41612-018-0054-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Park, and W. Park, 2019: Decadal Atlantic Meridional Overturning Circulation slowing events in a climate model. Climate Dyn., 53, 11111124, https://doi.org/10.1007/s00382-019-04772-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and J. J. Ploshay, 2013: Model projections of the changes in atmospheric circulation and surface climate over North America, the North Atlantic, and Europe in the twenty-first century. J. Climate, 26, 96039620, https://doi.org/10.1175/JCLI-D-13-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. H., S. Lee, H. J. Song, and C. H. Ho, 2017: The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes. J. Climate, 30, 74937504, https://doi.org/10.1175/JCLI-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., H. P. Dasari, and I. Hoteit, 2020: Extreme precipitation events are becoming less frequent but more intense over Jeddah, Saudi Arabia. Are shifting weather regimes the cause? Atmos. Sci. Lett., 21, e981, https://doi.org/10.1002/asl.981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., C. Li, C. M. Grams, and T. Woollings, 2017: The link between eddy-driven jet variability and weather regimes in the North Atlantic–European sector. Quart. J. Roy. Meteor. Soc., 143, 29602972, https://doi.org/10.1002/qj.3155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, https://doi.org/10.1175/JCLI-D-12-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and T. N. Palmer, 2018: Estimates of flow-dependent predictability of wintertime Euro-Atlantic weather regimes in medium-range forecasts. Quart. J. Roy. Meteor. Soc., 144, 10121027, https://doi.org/10.1002/qj.3265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, https://doi.org/10.1029/2009JD011919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, A., and P. D. Jones, 2005: Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int. J. Climatol., 25, 11491171, https://doi.org/10.1002/joc.1163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnos, S., T. Mamdouh, S. Petri, T. Nocke, T. Weinkauf, and D. Coumou, 2017: A network-based detection scheme for the jet stream core. Earth Syst. Dyn., 8, 7589, https://doi.org/10.5194/esd-8-75-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudar, T., J. Cattiaux, and H. Douville, 2020: Drivers of the northern extratropical eddy-driven jet change in CMIP5 and CMIP6 models. Geophys. Res. Lett., 47, e2019GL086695, https://doi.org/10.1029/2019GL086695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, https://doi.org/10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., J. Cattiaux, S. J. Vavrus, and G. Magnusdottir, 2018: Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett., 13, 074016, https://doi.org/10.1088/1748-9326/aacc79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., T. Knutson, J. P. Kossin, and A. N. LeGrande, 2017: Large-scale circulation and climate variability. Climate Science Special Report Fourth National Climate Assessment, Vol. I, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 161–184, https://doi.org/10.7930/J0RV0KVQ.5.1.

    • Crossref
    • Export Citation
  • Piecuch, C. G., 2020: Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nat. Commun., 11, 3973, https://doi.org/10.1038/s41467-020-17761-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quagraine, K. A., B. Hewitson, C. Jack, I. Pinto, and C. Lennard, 2019: A methodological approach to assess the co-behavior of climate processes over southern Africa. J. Climate, 32, 24832495, https://doi.org/10.1175/JCLI-D-18-0689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2007: North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res., 112, D02104, https://doi.org/10.1029/2006JD007460.

    • Search Google Scholar
    • Export Citation
  • Richardson, A. J., C. Risien, and F. A. Shillington, 2003: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr., 59, 223239, https://doi.org/10.1016/j.pocean.2003.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rikus, L., 2018: A simple climatology of westerly jet streams in global reanalysis datasets. Part I: Mid-latitude upper tropospheric jets. Climate Dyn., 50, 22852310, https://doi.org/10.1007/s00382-015-2560-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., D. Hodson, E. Hawkins, and R. Sutton, 2014: Atlantic overturning in decline? Nat. Geosci., 7, 23, https://doi.org/10.1038/ngeo2050.

  • Robson, J., and Coauthors, 2018: Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. Int. J. Climatol., 38, 50505076, https://doi.org/10.1002/joc.5815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and O. Martius, 2019: Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells. Geophys. Res. Lett., 46, 10 10110 111, https://doi.org/10.1029/2019GL083745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousi, E., C. Anagnostopoulou, K. Tolika, and P. Maheras, 2015: Representing teleconnection patterns over Europe: A comparison of SOM and PCA methods. Atmos. Res., 152, 123137, https://doi.org/10.1016/j.atmosres.2013.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousi, E., H. W. Rust, U. Ulbrich, and C. Anagnostopoulou, 2020: Implications of winter NAO flavors on present and future European climate. Climate, 8, 13, https://doi.org/10.3390/cli8010013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., and Coauthors, 2014: Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., 119, 12 50012 512, https://doi.org/10.1002/2014JD022098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and E. M. Fischer, 2015: Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saba, V. S., and Coauthors, 2016: Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans, 121, 118132, https://doi.org/10.1002/2015JC011346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152, https://doi.org/10.1175/2010JCLI3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., and Coauthors, 2016: Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Climate Change, 6, 627634, https://doi.org/10.1038/nclimate2927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2011: The self-organizing map in synoptic climatological research. Prog. Phys. Geogr., 35, 109119, https://doi.org/10.1177/0309133310397582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., C. Deser, K. A. McKinnon, and E. A. Barnes, 2018: Modeled and observed multidecadal variability in the North Atlantic jet stream and its connection to sea surface temperatures. J. Climate, 31, 83138338, https://doi.org/10.1175/JCLI-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skific, N., and J. Francis, 2012: Self-organizing maps: A powerful tool for the atmospheric sciences. Applications of Self-Organizing Maps, InTech, 251268.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strommen, K., I. Mavilia, S. Corti, M. Matsueda, P. Davini, J. von Hardenberg, P. L. Vidale, and R. Mizuta, 2019: The sensitivity of Euro-Atlantic regimes to model horizontal resolution. Geophys. Res. Lett., 46, 78107818, https://doi.org/10.1029/2019GL082843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez-Gutierrez, L., W. A. Müller, C. Li, and J. Marotzke, 2020: Dynamical and thermodynamical drivers of variability in European summer heat extremes. Climate Dyn., 54, 43514366, https://doi.org/10.1007/s00382-020-05233-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Totz, S., S. Petri, J. Lehmann, and D. Coumou, 2018: Regional changes in the mean position and variability of the tropical edge. Geophys. Res. Lett., 45, 12 07612 084, https://doi.org/10.1029/2018GL079911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Ulbrich, U., J. G. Pinto, H. Kupfer, G. C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679, https://doi.org/10.1175/2007JCLI1992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., H. C. Bloomfield, R. W. Lee, L. P. Stoop, R. Blackport, J. A. Screen, and F. M. Selten, 2019: The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett., 14, 094010, https://doi.org/10.1088/1748-9326/ab38d3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and Coauthors, 2019: Human contribution to the record-breaking June 2019 heat wave in France. World Weather Attribution, 32 pp., https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/.

  • van Ulden, A. P., and G. J. van Oldenborgh, 2006: Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in central Europe. Atmos. Chem. Phys., 6, 863881, https://doi.org/10.5194/acp-6-863-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, F. Otto, P. Stott, N. Christidis, G. J. van Oldenborgh, and N. Schaller, 2016: Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, M. M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B. J. J. M. van den Hurk, and S. I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett., 44, 15111519, https://doi.org/10.1002/2016GL071235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Z. Jiang, and W. Chen, 2015: Performance of CMIP5 models in the simulation of climate characteristics of synoptic patterns over East Asia. J. Meteor. Res., 29, 594607, https://doi.org/10.1007/s13351-015-4129-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, P. J., and Coauthors, 2018: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrens, R., and J. Kruisselbrink, 2018: kohonen: Supervised and unsupervised self-organising maps. https://cran.r-project.org/web/packages/kohonen/index.html.

  • Woollings, T., 2010: Dynamical influences on European climate: An uncertain future. Philos. Trans. Roy. Soc. London, 368A, 37333756, https://doi.org/10.1098/RSTA.2010.0040.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287300, https://doi.org/10.1007/s40641-018-0108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31, L07202, https://doi.org/10.1029/2003GL019119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., and Z. Liu, 2020: Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Climate Change, 10, 9981003, https://doi.org/10.1038/S41558-020-0897-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2203 0 0
Full Text Views 4273 1114 97
PDF Downloads 2998 512 41