Drought and Flood Characterization and Connection to Climate Variability in the Pearl River Basin in Southern China Using Long-Term GRACE and Reanalysis Data

Zhiyong Huang Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
The University of Hong Kong–Shenzhen Research Institute, Shenzhen, China
The University of Hong Kong–Zhejiang Institute of Research and Innovation, Hangzhou, China

Search for other papers by Zhiyong Huang in
Current site
Google Scholar
PubMed
Close
,
Jiu Jimmy Jiao Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
The University of Hong Kong–Shenzhen Research Institute, Shenzhen, China
The University of Hong Kong–Zhejiang Institute of Research and Innovation, Hangzhou, China

Search for other papers by Jiu Jimmy Jiao in
Current site
Google Scholar
PubMed
Close
,
Xin Luo Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
The University of Hong Kong–Shenzhen Research Institute, Shenzhen, China
The University of Hong Kong–Zhejiang Institute of Research and Innovation, Hangzhou, China

Search for other papers by Xin Luo in
Current site
Google Scholar
PubMed
Close
,
Yun Pan Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, China
College of Resource Environment and Tourism, Capital Normal University, Beijing, China

Search for other papers by Yun Pan in
Current site
Google Scholar
PubMed
Close
, and
Taoyong Jin School of Geodesy and Geomatics, Wuhan University, Wuhan, China

Search for other papers by Taoyong Jin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drought and flood are investigated in the Pearl River basin (PRB) using long-term terrestrial water storage anomaly (TWSA) data from the mascon (mass concentration) solutions based on Gravity Recovery and Climate Experiment (GRACE) satellite measurements (2002–19) and reanalysis data (1980–2019). The GRACE mascon solutions capture two major drought periods (2003–06 and 2009–12) with similar onsets and endings over the last two decades, but show considerable differences in quantifying total drought severity. The reanalysis data significantly overestimate drought duration and severity during 1980–2000 owing to overestimated negative TWSA forced by underestimated precipitation. The GRACE mascon solutions identify four major flood events in August 2002, June 2008, and July in 2006 and 2019. The flood potential is influenced by the precipitation in both the current and antecedent months. The flood potential index of the most recent flood in 2008 showed a similar spatial pattern compared to precipitation at monthly and subbasin scales. The precipitation and TWSA in the PRB are mainly influenced by El Niño–Southern Oscillation (ENSO). TWSA exhibits a lag of 1–3 months responding to ENSO during 1980–2019. This study emphasizes the significance of removing water storage changes in new large reservoirs before long-term drought and flood characterization. The inclusion of reservoir water storage would expand (shrink) the drought duration and overestimate (underestimate) drought severity for the period before (after) reservoir impoundment and overestimate flood potential for the period after reservoir impoundment. This study highlights the intensifying drought conditions in the PRB over the last four decades under the circumstances of more frequent human activities (reservoir construction and regulation) and the complex changing climate system.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0332.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiu Jimmy Jiao, jjiao@hku.hk

Abstract

Drought and flood are investigated in the Pearl River basin (PRB) using long-term terrestrial water storage anomaly (TWSA) data from the mascon (mass concentration) solutions based on Gravity Recovery and Climate Experiment (GRACE) satellite measurements (2002–19) and reanalysis data (1980–2019). The GRACE mascon solutions capture two major drought periods (2003–06 and 2009–12) with similar onsets and endings over the last two decades, but show considerable differences in quantifying total drought severity. The reanalysis data significantly overestimate drought duration and severity during 1980–2000 owing to overestimated negative TWSA forced by underestimated precipitation. The GRACE mascon solutions identify four major flood events in August 2002, June 2008, and July in 2006 and 2019. The flood potential is influenced by the precipitation in both the current and antecedent months. The flood potential index of the most recent flood in 2008 showed a similar spatial pattern compared to precipitation at monthly and subbasin scales. The precipitation and TWSA in the PRB are mainly influenced by El Niño–Southern Oscillation (ENSO). TWSA exhibits a lag of 1–3 months responding to ENSO during 1980–2019. This study emphasizes the significance of removing water storage changes in new large reservoirs before long-term drought and flood characterization. The inclusion of reservoir water storage would expand (shrink) the drought duration and overestimate (underestimate) drought severity for the period before (after) reservoir impoundment and overestimate flood potential for the period after reservoir impoundment. This study highlights the intensifying drought conditions in the PRB over the last four decades under the circumstances of more frequent human activities (reservoir construction and regulation) and the complex changing climate system.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0332.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiu Jimmy Jiao, jjiao@hku.hk

Supplementary Materials

    • Supplemental Materials (PDF 1.01 MB)
Save
  • A, G., J. Wahr, and S. Zhong, 2012: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int., 192, 557572, https://doi.org/10.1093/GJI/GGS030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abelen, S., F. Seitz, R. Abarca-del-Rio, and A. Güntner, 2015: Droughts and floods in the La Plata basin in soil moisture data and GRACE. Remote Sens., 7, 73247349, https://doi.org/10.3390/rs70607324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., A. Farahmand, F. S. Melton, J. Teixeira, M. C. Anderson, B. D. Wardlow, and C. R. Hain, 2015: Remote sensing of drought: Progress, challenges, and opportunities. Rev. Geophys., 53, 452480, https://doi.org/10.1002/2014RG000456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahi, G. O., and S. Jin, 2019: Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements. Remote Sens., 11, 120, https://doi.org/10.3390/rs11020120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, W. M., and L. F. Konikow, 2015: Bringing GRACE down to earth. Ground Water, 53, 826829, https://doi.org/10.1111/gwat.12379.

  • Awange, J. L., E. Forootan, M. Kuhn, J. Kusche, and B. Heck, 2014: Water storage changes and climate variability within the Nile basin between 2002 and 2011. Adv. Water Resour., 73, 115, https://doi.org/10.1016/j.advwatres.2014.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awange, J. L., Khandu, M. Schumacher, E. Forootan, and B. Heck, 2016: Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979–2014) using remote sensing and reanalysis products. Adv. Water Resour., 94, 4559, https://doi.org/10.1016/j.advwatres.2016.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., C. M. Gouveia, R. M. Trigo, and L. Wang, 2012: The 2009/10 drought in China: Possible causes and impacts on vegetation. J. Hydrometeor., 13, 12511267, https://doi.org/10.1175/JHM-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606, Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Bosilovich, M. G., R. Lucchesi and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note 9 (version 1.1), 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

  • Chan, J. C. L., 2005: PDO, ENSO, and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, https://doi.org/10.1029/2004GL022015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhari, S., Y. Pokhrel, E. Moran, and G. Miguez-Macho, 2019: Multi-decadal hydrologic change and variability in the Amazon River basin: Understanding terrestrial water storage variations and drought characteristics. Hydrol. Earth Syst. Sci., 23, 28412862, https://doi.org/10.5194/hess-23-2841-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, B. D. Tapley, Z. L. Yang, and G. Y. Niu, 2009: 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res., 114, B05404, https://doi.org/10.1029/2008JB006056.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2010: The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res., 46, W12526, https://doi.org/10.1029/2010WR009383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., T. Li, and C. Shih, 2008: Asymmetry of the El Niño–spring rainfall relationship in Taiwan. J. Meteor. Soc. Japan, 86, 297312, https://doi.org/10.2151/jmsj.86.297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Jiang, and H. Li, 2018: Drought and flood monitoring of the Liao River basin in Northeast China using extended GRACE data. Remote Sens., 10, 1168, https://doi.org/10.3390/rs10081168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., L. Guo, C. Ye, and L. Zhu, 2018: Spatial-temporal characteristics of the drought and flood in Pearl River basin (in Chinese). China Rural Water Hydropower, 113120+125.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., J. C. Ries, and B. D. Tapley, 2011: Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J. Geophys. Res., 116, B01409, https://doi.org/10.1029/2010JB000850.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., B. D. Tapley, and J. C. Ries, 2013: Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth, 118, 740747, https://doi.org/10.1002/jgrb.50058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W. Z., J. Chen, Y. P. Wu, and Y. D. Wu, 2007: An overview of water resources management of the Pearl River. Water Sci. Technol. Water Supply, 7, 101113, https://doi.org/10.2166/ws.2007.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Editorial Board of China Agriculture Yearbook, 1980–2017 (published yearly): China Agriculture Yearbook (in Chinese). China Agriculture Press, https://data.cnki.net/area/Yearbook.

  • Editorial Board of China Water Conservancy Yearbook, 2018–2019: China Water Conservancy Yearbook (in Chinese), China Water & Power Press, https://data.cnki.net/area/Yearbook.

  • Forootan, E., and Coauthors, 2019: Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total Environ., 650, 25872604, https://doi.org/10.1016/j.scitotenv.2018.09.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Q., and Z. Niu, 2020: Construction of the long-term global surface water extent dataset based on water-NDVI spatio-temporal parameter set. Remote Sens., 12, 2675, https://doi.org/10.3390/rs12172675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z., and Coauthors, 2019: Propagation dynamics from meteorological to groundwater drought and their possible influence factors. J. Hydrol., 578, 124102, https://doi.org/10.1016/j.jhydrol.2019.124102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heddinghaus, T. R., and P. Sabol, 1991: A review of the Palmer Drought Severity Index and where do we go from here. Proc. Seventh Conf. on Applied Climatology, Boston, MA, Amer. Meteor. Soc., 242–246.

  • Heumann, B. W., 2011: Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr., 35, 87108, https://doi.org/10.1177/0309133310385371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae, 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, https://doi.org/10.1038/nclimate1911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosseini-Moghari, S., S. Araghinejad, K. Ebrahimi, and M. J. Tourian, 2019: Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations. Ecol. Indic., 101, 465475, https://doi.org/10.1016/j.ecolind.2019.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., and Coauthors, 2019a: Detection of large-scale groundwater storage variability over the karstic regions in southwest China. J. Hydrol., 569, 409422, https://doi.org/10.1016/j.jhydrol.2018.11.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., J. J. Jiao, X. Luo, Y. Pan, and C. Zhang, 2019b: Sensitivity analysis of leakage correction of GRACE data in southwest China using a-priori model simulations: Inter-comparison of spherical harmonics, mass concentration and in situ observations. Sensors, 19, 3149, https://doi.org/10.3390/s19143149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Idowu, D., and W. Zhou, 2019: Performance evaluation of a potential component of an early flood warning system—A case study of the 2012 flood, lower Niger River basin, Nigeria. Remote Sens., 11, 1970, https://doi.org/10.3390/rs11171970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, S., and G. Feng, 2013: Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global Planet. Change, 106, 2030, https://doi.org/10.1016/j.gloplacha.2013.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, W., P. Zhang, X. Zhao, Y. Yang, H. Jiang, J. Xu, J. Yang, and Y. Li, 2020: Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure. J. Hydrol., 590, 125239, https://doi.org/10.1016/j.jhydrol.2020.125239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1986: The sensitivity of the Palmer Drought Severity Index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25, 7786, https://doi.org/10.1175/1520-0450(1986)025<0077:TSOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L. L., T. Jiang, J. G. Xu, J. Q. Zhai, and L. Yong, 2012: Responses of hydrological processes to climate change in the Zhujiang River basin in the 21st century. Adv. Climate Change Res., 3, 8491, https://doi.org/10.3724/SP.J.1248.2012.00084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Feng, P. Ciais, and B. Fu, 2020: Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe. Hydrol. Earth Syst. Sci., 24, 36633676, https://doi.org/10.5194/hess-24-3663-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., Y. Shen, A. Sun, Y. Hong, L. Longuevergne, Y. Yang, B. Li, and L. Chen, 2014: Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ., 155, 145160, https://doi.org/10.1016/j.rse.2014.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., T. Jiang, H. Sun, C. Jing, and B. Su, 2017: Variation of droughts and floods and their connection with atmospheric circulation in the Pearl River basin (in Chinese with English abstract). J. Arid Land Resour. Environ., 31, 142147.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., C. Yao, Q. Li, and Z. Huang, 2016: Terrestrial water storage changes over the Pearl River basin from GRACE and connections with Pacific climate variability. Geod. Geodyn., 7, 171179, https://doi.org/10.1016/j.geog.2016.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., T. J. Sabaka, B. D. Loomis, A. A. Arendt, J. J. McCarthy, and J. Camp, 2013: Antarctica, Greenland, and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613631, https://doi.org/10.3189/2013JoG12J147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conference on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Molodtsova, T., S. Molodtsov, A. Kirilenko, X. Zhang, and J. VanLooy, 2016: Evaluating flood potential with GRACE in the United States. Nat. Hazard. Earth Sys., 16, 10111018, https://doi.org/10.5194/nhess-16-1011-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, B. D. Fogg, Ed., Cambridge University Press, 205–234.

  • Morid, S., V. Smakhtin, and M. Moghaddasi, 2006: Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol., 26, 971985, https://doi.org/10.1002/joc.1264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, https://doi.org/10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, https://doi.org/10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133, 6988, https://doi.org/10.1016/j.agrformet.2005.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndehedehe, C. E., J. L. Awange, M. Kuhn, N. O. Agutu, and Y. Fukuda, 2017: Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrol. Processes, 31, 32063224, https://doi.org/10.1002/hyp.11237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndehedehe, C. E., J. L. Awange, N. O. Agutu, and O. Okwuashi, 2018: Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Global Planet. Change, 162, 321341, https://doi.org/10.1016/j.gloplacha.2018.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, S., J. Chen, C. R. Wilson, J. Li, X. Hu, and R. Fu, 2018: Global terrestrial water storage changes and connections to ENSO events. Surv. Geophys., 39, 122, https://doi.org/10.1007/s10712-017-9421-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, J., 2010: A comprehensive analysis of terrestrial hydrological processes over the Pearl River basin in South China. Ph.D. thesis, The University of Hong Kong, 202 pp.

  • Niu, J., 2013: Precipitation in the Pearl River basin, South China: Scaling, regional patterns, and influence of large-scale climate anomalies. Stochastic Environ. Res. Risk Assess., 27, 12531268, https://doi.org/10.1007/s00477-012-0661-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, J., J. Chen, and B. Sivakumar, 2014: Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China. Hydrol. Earth Syst. Sci., 18, 14751492, https://doi.org/10.5194/hess-18-1475-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. Research Paper 45, U.S. Department of Commerce, Weather Bureau, 58 pp., https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearl River Water Conservancy Commission, 2003–2018: Water Resources Bulletin of Pearl River Basin (in Chinese). Pearl River Water Conservancy Commission, http://www.pearlwater.gov.cn/zwgkcs/lygb/szygb/.

  • Pearl River Water Conservancy Commission, 2005: Pearl River Flood Prevention Handbook. Pearl River Water Resource Commission, 150 pp.

  • Pekel, J., A. Cottam, N. Gorelick, and A. S. Belward, 2016: High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422, https://doi.org/10.1038/nature20584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellet, V., F. Aires, F. Papa, S. Munier, and B. Decharme, 2020: Long-term total water storage change from a satellite water cycle reconstruction over large southern Asian basins. Hydrol. Earth Syst. Sci., 24, 30333055, https://doi.org/10.5194/hess-24-3033-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostatic and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., D. F. Argus, and R. Drummond, 2018: Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth, 123, 20192028, https://doi.org/10.1002/2016JB013844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T., R. S. Nerem, B. Fox-Kemper, J. S. Famiglietti, and B. Rajagopalan, 2012: The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett., 39, L16705, https://doi.org/10.1029/2012GL052495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reager, J. T., and J. S. Famiglietti, 2009: Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett., 36, L23402, https://doi.org/10.1029/2009GL040826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reager, J. T., B. F. Thomas, and J. S. Famiglietti, 2014: River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci., 7, 588592, https://doi.org/10.1038/ngeo2203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, https://doi.org/10.1175/JCLI3527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and A. W. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, https://doi.org/10.1029/2007GL032487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, D., T. H. Syed, J. S. Famiglietti, J. T. Reager, and R. C. Thomas, 2017: Characterizing drought in India using GRACE observations of terrestrial water storage deficit. J. Hydrometeor., 18, 381396, https://doi.org/10.1175/JHM-D-16-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, D., T. H. Syed, and J. T. Reager, 2019: Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins. J. Hydrol., 572, 294307, https://doi.org/10.1016/j.jhydrol.2019.02.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., X. Zhu, Y. Pan, and J. Zhang, 2017: Assessing terrestrial water storage and flood potential using GRACE data in the Yangtze River basin, China. Remote Sens., 9, 1011, https://doi.org/10.3390/rs9101011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., X. Zhu, Y. Pan, J. Zhang, and X. Liu, 2018: Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River basin, China. Sci. Total Environ., 634, 727738, https://doi.org/10.1016/j.scitotenv.2018.03.292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., D. Long, W. Yang, X. Li, and Y. Pan, 2020: Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res., 56, e2019WR026250, https://doi.org/10.1029/2019WR026250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., D. Chambers, and J. Wahr, 2008: Estimating center variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113, B08410, https://doi.org/10.1029/2007JB005338.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and Y. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, https://doi.org/10.1002/2014GL059323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos., 118, 40254048, https://doi.org/10.1002/jgrd.50355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vishwakarma, B. D., B. Devaraju, and N. Sneeuw, 2016: Minimizing the effects of filtering on catchment-scale GRACE solutions. Water Resour. Res., 52, 58685890, https://doi.org/10.1002/2016WR018960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and G. Huang, 2015: Drought in southwest China: A review. Atmos. Oceanic Sci. Lett., 8, 339344, https://doi.org/10.3878/AOSL20150043.

    • Search Google Scholar
    • Export Citation
  • Watkins, M. M., D. N. Wiese, D. Yuan, C. Boening, and F. W. Landerer, 2015: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winsemius, H. C., and Coauthors, 2016: Global drivers of future river flood risk. Nat. Climate Change, 6, 381385, https://doi.org/10.1038/nclimate2893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, and T. Ma, 2012: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 24812489, https://doi.org/10.1175/JCLI-D-11-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, M., Q. Zhang, V. P. Singh, and L. Liu, 2016: Transitional properties of droughts and related impacts of climate indices in the Pearl River basin, China. J. Hydrol., 534, 397406, https://doi.org/10.1016/j.jhydrol.2016.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., and M. Zhang, 2004: A study of the Indian Ocean dipole influence on climate variations over East Asian monsoon region. Climate Environ. Res., 9, 435444.

    • Search Google Scholar
    • Export Citation
  • Yirdaw, S. Z., K. R. Snelgrove, and C. O. Agboma, 2008: GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian prairie. J. Hydrol., 356, 8492, https://doi.org/10.1016/j.jhydrol.2008.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Li, 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zargar, A., R. Sadiq, B. Naser, and F. I. Khan, 2011: A review of drought indices. Environ. Rev., 19, 333349, https://doi.org/10.1139/a11-013.

  • Zhang, Q., C. Y. Xu, S. Becker, Z. X. Zhang, Y. D. Chen, and M. Coulibaly, 2009: Trends and abrupt changes of precipitation maxima in the Pearl River basin, China. Atmos. Sci. Lett., 10, 132144, https://doi.org/10.1002/asl.221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. Li, M. Wen, and L. Liu, 2015: Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dyn., 45, 559567, https://doi.org/10.1007/s00382-014-2207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. F. Chao, J. Chen, and C. R. Wilson, 2015: Terrestrial water storage anomalies of Yangtze River basin droughts observed by GRACE and connections with ENSO. Global Planet. Change, 126, 3545, https://doi.org/10.1016/j.gloplacha.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. Geruo, I. Velicogna, and J. S. Kimball, 2017: Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes. J. Climate, 30, 62976308, https://doi.org/10.1175/JCLI-D-16-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., Y. He, and X. Chen, 2017: Spatiotemporal pattern of precipitation concentration and its possible causes in the Pearl River basin, China. J. Clean. Prod., 161, 10201031, https://doi.org/10.1016/j.jclepro.2017.06.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., 2013: Weakening of winter North Atlantic oscillation signal in spring precipitation over southern China. Atmos. Oceanic Sci. Lett., 6, 248252, https://doi.org/10.1080/16742834.2013.11447089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., Z. Luo, N. Tangdamrongsub, L. Wang, L. He, C. Xu, and Q. Li, 2017: Characterizing drought and flood events over the Yangtze River basin using the HUST-Grace2016 solution and ancillary data. Remote Sens., 9, 1100, https://doi.org/10.3390/rs9111100.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 904 0 0
Full Text Views 2402 1039 76
PDF Downloads 1625 366 57