Assessing the Influence of Large-Scale Environmental Conditions on the Rainfall Structure of Atlantic Tropical Cyclones: An Observational Study

Dasol Kim School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Dasol Kim in
Current site
Google Scholar
PubMed
Close
,
Chang-Hoi Ho School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Chang-Hoi Ho in
Current site
Google Scholar
PubMed
Close
,
Hiroyuki Murakami NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
, and
Doo-Sun R. Park Department of Earth Science Education, Kyungpook National University, Daegu, South Korea

Search for other papers by Doo-Sun R. Park in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the mechanisms related to the variations in the rainfall structure of tropical cyclones (TCs) is crucial in improving forecasting systems of TC rainfall and its impact. Using satellite precipitation and reanalysis data, we examined the influence of along-track large-scale environmental conditions on inner-core rainfall strength (RS) and total rainfall area (RA) for Atlantic TCs during the TC season (July–November) from 1998 to 2019. Factor analysis revealed three major factors associated with variations in RS and RA: large-scale low and high pressure systems [factor 1 (F1)]; environmental flows, sea surface temperature, and humidity [factor 2 (F2)]; and maximum wind speed of TCs [factor 3 (F3)]. Results from our study indicate that RS increases with an increase in the inherent primary circulation of TCs (i.e., F3) but is less affected by large-scale environmental conditions (i.e., F1 and F2), whereas RA is primarily influenced by large-scale low and high pressure systems (i.e., F1) over the entire North Atlantic and partially influenced by environmental flows, sea surface temperature, humidity, and maximum wind speed (i.e., F2 and F3). A multivariable regression model based on the three factors accounted for the variations of RS and RA across the entire basin. In addition, regional distributions of mean RS and RA from the model significantly resembled those from observations. Therefore, our study suggests that large-scale environmental conditions over the North Atlantic Ocean are important predictors for TC rainfall forecasts, particularly with regard to RA.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0376.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chang-Hoi Ho, hoch@cpl.snu.ac.kr

Abstract

Understanding the mechanisms related to the variations in the rainfall structure of tropical cyclones (TCs) is crucial in improving forecasting systems of TC rainfall and its impact. Using satellite precipitation and reanalysis data, we examined the influence of along-track large-scale environmental conditions on inner-core rainfall strength (RS) and total rainfall area (RA) for Atlantic TCs during the TC season (July–November) from 1998 to 2019. Factor analysis revealed three major factors associated with variations in RS and RA: large-scale low and high pressure systems [factor 1 (F1)]; environmental flows, sea surface temperature, and humidity [factor 2 (F2)]; and maximum wind speed of TCs [factor 3 (F3)]. Results from our study indicate that RS increases with an increase in the inherent primary circulation of TCs (i.e., F3) but is less affected by large-scale environmental conditions (i.e., F1 and F2), whereas RA is primarily influenced by large-scale low and high pressure systems (i.e., F1) over the entire North Atlantic and partially influenced by environmental flows, sea surface temperature, humidity, and maximum wind speed (i.e., F2 and F3). A multivariable regression model based on the three factors accounted for the variations of RS and RA across the entire basin. In addition, regional distributions of mean RS and RA from the model significantly resembled those from observations. Therefore, our study suggests that large-scale environmental conditions over the North Atlantic Ocean are important predictors for TC rainfall forecasts, particularly with regard to RA.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0376.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chang-Hoi Ho, hoch@cpl.snu.ac.kr

Supplementary Materials

    • Supplemental Materials (PDF 519.84 KB)
Save
  • Bakkensen, L. A., D.-S. R. Park, and R. S. R. Sarkar, 2018: Climate costs of tropical cyclone losses also depend on rain. Environ. Res. Lett., 13, 074034, https://doi.org/10.1088/1748-9326/aad056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., and L. E. Newman, 2000: Climatological relationships between tropical cyclones and rainfall. Mon. Wea. Rev., 128, 33293336, https://doi.org/10.1175/1520-0493(2000)128<3329:CRBTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2015: Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol., 35, 48434848, https://doi.org/10.1002/joc.4307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, and K. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, https://doi.org/10.1175/JAS-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, W. Dong, and Y. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29, 29232939, https://doi.org/10.1175/JCLI-D-15-0731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. Y. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., K. Simmons, and D. Sutter, 2011: An analysis of coastal and inland fatalities in landfalling US hurricanes. Nat. Hazards, 59, 15131531, https://doi.org/10.1007/s11069-011-9849-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., G. Villarini, M. Montgomery, E. Michel-Kerjan, and R. Goska, 2017: Assessing current and future freshwater flood risk from North Atlantic tropical cyclones via insurance claims. Sci. Rep., 7, 41609, https://doi.org/10.1038/srep41609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular-momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, https://doi.org/10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 5 October, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Crossref
    • Export Citation
  • Jiang, H., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008a: Hurricane “rainfall potential” derived from satellite observations aids overland rainfall prediction. J. Appl. Meteor. Climatol., 47, 944959, https://doi.org/10.1175/2007JAMC1619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, and E. J. Zipser, 2008b: Influence of environmental moisture on TRMM-derived tropical cyclone precipitation over land and ocean. Geophys. Res. Lett., 35, L17806, https://doi.org/10.1029/2008GL034658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., C.-H. Ho, D.-S. R. Park, J. C. L. Chan, and Y. Jung, 2018: The relationship between tropical cyclone rainfall area and environmental conditions over the subtropical oceans. J. Climate, 31, 46054616, https://doi.org/10.1175/JCLI-D-17-0712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., C.-H. Ho, D.-S. R. Park, and J. Kim, 2019: Influence of vertical wind shear on wind- and rainfall areas of tropical cyclones making landfall over South Korea. PLOS ONE, 14, e0209885, https://doi.org/10.1371/journal.pone.0209885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, M.-H. Lee, J.-H. Jeong, and D. Chen, 2006: Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophys. Res. Lett., 33, L18706, https://doi.org/10.1029/2006GL027430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2008: Structure and evolution of rainfall in numerically simulated landfalling hurricanes. Mon. Wea. Rev., 136, 38223847, https://doi.org/10.1175/2008MWR2304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and L. B. Perry, 2010: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522534, https://doi.org/10.1002/joc.1894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, https://doi.org/10.1038/ncomms7591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130, 21342142, https://doi.org/10.1175/1520-0493(2002)130<2134:SFPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. J. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2010: Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteor. Atmos. Phys., 106, 135148, https://doi.org/10.1007/s00703-009-0056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2013: Processes influencing rain-field growth and decay after tropical cyclone landfall in the United States. J. Appl. Meteor. Climatol., 52, 10851096, https://doi.org/10.1175/JAMC-D-12-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2014: Conditions associated with large rain-field areas for tropical cyclones landfalling over Florida. Phys. Geogr., 35, 93106, https://doi.org/10.1080/02723646.2014.893476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular-momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, C. C. Nam, and H.-S. Kim, 2015: Evidence of reduced vulnerability to tropical cyclones in the Republic of Korea. Environ. Res. Lett., 10, 054003, https://doi.org/10.1088/1748-9326/10/5/054003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., and E. Lee, 2007: Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002). Geophys. Res. Lett., 34, L02803, https://doi.org/10.1029/2006GL028592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., J. Rubiera, C. W. Landsea, M. L. Fernández, and R. Klein, 2003: Hurricane vulnerability in Latin America and the Caribbean: Normalized damage and loss potentials. Nat. Hazards Rev., 4, 101114, https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(101).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., G. Villarini, W. Zhang, and G. A. Vecchi, 2018: The added value of IMERG in characterizing rainfall in tropical cyclones. Atmos. Res., 209, 95102, https://doi.org/10.1016/j.atmosres.2018.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2003: Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to reintensification. Mon. Wea. Rev., 131, 21122128, https://doi.org/10.1175/1520-0493(2003)131<2112:SOTETO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor., 33, 129139, https://doi.org/10.1175/1520-0450(1994)033<0129:ASOANS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, G. Villarini, G. A. Vecchi, M. Zhao, K. Walsh, and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 46424654, https://doi.org/10.1175/JCLI-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and M. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, https://doi.org/10.1002/qj.679.

  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data-analysis and climatology. Mon. Wea. Rev., 116, 10321043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C. M., and M. C. Edwards, 2008: Factor analysis and related methods. Epidemiology and Medical Statistics, C. R. Rao, J. P. Miller, and D. C. Rao, Eds., Handbook of Statistics Series, Vol. 27, Elsevier, 367–394.

    • Crossref
    • Export Citation
  • Xu, W., H. Jiang, and X. Kang, 2014: Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in South China and Southeast United States. Atmos. Res., 139, 1826, https://doi.org/10.1016/j.atmosres.2013.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and C. J. Matyas, 2018: Spatial characteristics of rain fields associated with tropical cyclones landfalling over the western Gulf of Mexico and Caribbean Sea. J. Appl. Meteor. Climatol., 57, 17111727, https://doi.org/10.1175/JAMC-D-18-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., C. J. Matyas, H. Li, and J. Tang, 2018: Conditions associated with rain field size for tropical cyclones landfalling over the eastern United States. Atmos. Res., 214, 375385, https://doi.org/10.1016/j.atmosres.2018.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 474 0 0
Full Text Views 1346 463 33
PDF Downloads 1053 247 22