Future Changes in Tropical Cyclone Intensity and Frequency over the Western North Pacific Based on 20-km HiRAM and MRI Models

Chi-Cherng Hong Department of Earth and Life, University of Taipei, Taipei, Taiwan

Search for other papers by Chi-Cherng Hong in
Current site
Google Scholar
PubMed
Close
,
Chih-Hua Tsou Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Chih-Hua Tsou in
Current site
Google Scholar
PubMed
Close
,
Pang-Chi Hsu Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, China

Search for other papers by Pang-Chi Hsu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3363-7967
,
Kuan-Chieh Chen Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Kuan-Chieh Chen in
Current site
Google Scholar
PubMed
Close
,
Hsin-Chien Liang Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Hsin-Chien Liang in
Current site
Google Scholar
PubMed
Close
,
Huang-Hsiung Hsu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Huang-Hsiung Hsu in
Current site
Google Scholar
PubMed
Close
,
Chia-Ying Tu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Chia-Ying Tu in
Current site
Google Scholar
PubMed
Close
, and
Akio Kitoh Japan Meteorological Business Support Center, Tsukuba, Japan
Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Akio Kitoh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The future changes in tropical cyclone (TC) intensity and frequency over the western North Pacific (WNP) under global warming remain uncertain. In this study, we investigated such changes using 20-km resolution HiRAM and Meteorological Research Institute (MRI) models, which can realistically simulate the TC activity in the present climate. We found that the mean intensity of TCs in the future (2075–99) would increase by approximately 15%, along with an eastward shift of TC genesis location in response to the El Niño–like warming. However, the lifetime of future TCs would be shortened because the TCs tend to have more poleward genesis locations and move faster due to a stronger steering flow related to the strengthened WNP subtropical high in a warmer climate. In other words, the enhancement of TC intensity in the future is not attributable to the duration of TC lifetime. To understand the processes responsible for the change in TC intensity in a warmer climate, we applied the budget equation of synoptic-scale eddy kinetic energy along the TC tracks in model simulations. The diagnostic results suggested that both the upper-level baroclinic energy conversion (CE) and lower-level barotropic energy conversion (CK) contribute to the intensified TCs under global warming. The increased CE results from the enhancement of TC-related perturbations of temperature and vertical velocity over the subtropical WNP, whereas the increased CK mainly comes from synoptic-scale eddies interacting with enhanced zonal-wind convergence associated with seasonal-mean and intraseasonal flows over Southeast China and the northwestern sector of WNP.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pang-Chi Hsu, pangchi@nuist.edu.cn

Abstract

The future changes in tropical cyclone (TC) intensity and frequency over the western North Pacific (WNP) under global warming remain uncertain. In this study, we investigated such changes using 20-km resolution HiRAM and Meteorological Research Institute (MRI) models, which can realistically simulate the TC activity in the present climate. We found that the mean intensity of TCs in the future (2075–99) would increase by approximately 15%, along with an eastward shift of TC genesis location in response to the El Niño–like warming. However, the lifetime of future TCs would be shortened because the TCs tend to have more poleward genesis locations and move faster due to a stronger steering flow related to the strengthened WNP subtropical high in a warmer climate. In other words, the enhancement of TC intensity in the future is not attributable to the duration of TC lifetime. To understand the processes responsible for the change in TC intensity in a warmer climate, we applied the budget equation of synoptic-scale eddy kinetic energy along the TC tracks in model simulations. The diagnostic results suggested that both the upper-level baroclinic energy conversion (CE) and lower-level barotropic energy conversion (CK) contribute to the intensified TCs under global warming. The increased CE results from the enhancement of TC-related perturbations of temperature and vertical velocity over the subtropical WNP, whereas the increased CK mainly comes from synoptic-scale eddies interacting with enhanced zonal-wind convergence associated with seasonal-mean and intraseasonal flows over Southeast China and the northwestern sector of WNP.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pang-Chi Hsu, pangchi@nuist.edu.cn
Save
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, https://doi.org/10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, E. J., T. R. Knutson, T. C. Lee, M. Ying, and T. Nakaegawa, 2020: Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region—Part II: Future projections. Trop. Cyclone Res. Rev., 9, 7586, https://doi.org/10.1016/j.tcrr.2020.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-A., H.-H. Hsu, C.-C. Hong, P.-G. Chiu, C.-Y. Tu, S.-J. Lin, and A. Kitoh, 2019: Seasonal precipitation change in the western North Pacific and East Asia under global warming in two high-resolution AGCMs. Climate Dyn., 53, 55835605, https://doi.org/10.1007/s00382-019-04883-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H.-H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Y., R. Wu, R. Yu, and X. Liang, 2013: Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteor. Sin., 27, 658672, https://doi.org/10.1007/s13351-013-0503-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347368, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and M. G. Morgan, 2011: Tropical cyclones, climate change, and scientific uncertainty: What do we know, what does it mean, and what should be done? Climatic Change, 108, 543579, https://doi.org/10.1007/s10584-011-0020-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., Y.-K. Wu, T. Li, and C.-C. Chang, 2013: The climate regime shift in Pacific during 1996/1997. Climate Dyn., 43, 435446, https://doi.org/10.1007/s00382-013-1867-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., C.-H. Tsou, M.-Y. Lee, C.-C. Chang, H.-H. Hsu, and K.-C. Chen, 2018: Effect of ISO-SSE interaction on accelerating the TS to severe TS development in the WNP since the late 1990s. Geophys. Res. Lett., 45, 12 00812 014, https://doi.org/10.1029/2018GL079548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, https://doi.org/10.1175/2010JCLI3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T.-H. Lee, C.-H. Tsou, P.-S. Chu, Y. Qian, and M. Bi, 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dyn., 49, 31753192, https://doi.org/10.1007/s00382-016-3504-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Jullien, S., P. Marchesiello, C. E. Menkes, J. Lefèvre, N. C. Jourdain, G. Samson, and M. Lengaigne, 2014: Ocean feedback to tropical cyclones: Climatology and processes. Climate Dyn., 43, 28312854, https://doi.org/10.1007/s00382-014-2096-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and H. Endo, 2016: Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Wea. Climate Extremes, 11, 4152, https://doi.org/10.1016/j.wace.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Knutson, T. R., S. J. Camargo, J. C. Chan, K. Emanuel, C. H. Ho, J. Kossin, and L. Wu, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., 2018: Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia? Climate Dyn., 51, 44894510, https://doi.org/10.1007/s00382-016-3335-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and R. Mizuta, 2013: Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J. Geophys. Res. Atmos., 118, 11 00711 016, https://doi.org/10.1002/jgrd.50877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and J. J. Ploshay, 2009: Simulation of synoptic- and subsynoptic-scale phenomena associated with the East Asian summer monsoon using a high-resolution GCM. Mon. Wea. Rev., 137, 137160, https://doi.org/10.1175/2008MWR2511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167171, https://doi.org/10.2151/sola.2014-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, https://doi.org/10.2151/sola.2010-019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, https://doi.org/10.1175/2010JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, https://doi.org/10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., P. C. Hsu, O. Arakawa, and T. Li, 2014: Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. J. Climate, 27, 21592181, https://doi.org/10.1175/JCLI-D-13-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okada, Y., T. Takemi, H. Ishikawa, S. Kusunoki, and R. Mizuta, 2017: Future changes in atmospheric conditions for the seasonal evolution of the baiu as revealed from projected AGCM experiments. J. Meteor. Soc. Japan, 95, 239260, https://doi.org/10.2151/jmsj.2017-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multi-model ensemble. Geophys. Res. Lett., 47, e2020GL088662, https://doi.org/10.1029/2020GL088662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169186, https://doi.org/10.1080/00431672.1974.9931702.

  • Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 99469959, https://doi.org/10.1175/JCLI-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu, 2014: The role of multi-scale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn. J. Climate, 27, 37503766, https://doi.org/10.1175/JCLI-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., P.-Y. Huang, C.-Y. Tu, C.-T. Chen, T.-P. Tzeng, and C.-T. Chen, 2016: Present simulation and future typhoon activity projection over western North Pacific and Taiwan/East Coast of China in 20-km HiRAM climate model. Terr. Atmos. Oceanic Sci., 27, 687703, https://doi.org/10.3319/TAO.2016.06.13.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, https://doi.org/10.1029/2006GL028905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dyn., 53, 59996033, https://doi.org/10.1007/s00382-019-04913-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dyn., 40, 28872902, https://doi.org/10.1007/s00382-012-1434-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., X. Wang, and P. C. Chu, 2018: Air-sea interactions during rapid intensification of Typhoon Fengshen (2008). Deep-Sea Res. I, 140, 6377, https://doi.org/10.1016/j.dsr.2018.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., S.-K. Min, W. Cai, F. W. Zwiers, Y.-H. Kim, and D. Lee, 2016: Human-caused Indo-Pacific warm pool expansion. Sci. Adv., 2, e1501719, https://doi.org/10.1126/sciadv.1501719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, C.-H., and H.-H. Hsu, 2017: Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophys. Res. Lett., 44, 33393345, https://doi.org/10.1002/2017GL072743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., J. C. L. Chan, I.-J. Moon, K. Yoshida, and R. Mizuta, 2020: Global warming changes tropical cyclone translation speed. Nat. Commun., 11, 47, https://doi.org/10.1038/s41467-019-13902-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., C. Takahashi, K. Yasunaga, and R. Shirooka, 2012: Multi-model projection of tropical cyclone genesis frequency over the western North Pacific: CMIP5 results. SOLA, 8, 137140, https://doi.org/10.2151/sola.2012-034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii, 2017: Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys. Res. Lett., 44, 99109917, https://doi.org/10.1002/2017GL075058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model v1 (MRIESM1)—Model description. Meteorological Research Institute Tech. Rep. 64, 88 pp., https://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/tec_rep_mri_64.pdf.

  • Zhang, G., H. Murakami, T. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion in changing climate. Sci. Adv., 6, eaaz7610, https://doi.org/10.1126/sciadv.aaz7610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., P.-C. Hsu, and Y. Qian, 2018: Close linkage between quasi-biweekly oscillation and tropical cyclone intensification over the western North Pacific. Atmos. Sci. Lett., 19, e826, https://doi.org/10.1002/asl.826.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 742 0 0
Full Text Views 2018 899 51
PDF Downloads 1196 296 33