Comparison of Regional Climate Model Performances for Different Types of Heat Waves over South Korea

Donghyuck Yoon Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Donghyuck Yoon in
Current site
Google Scholar
PubMed
Close
,
Dong-Hyun Cha Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dong-Hyun Cha in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5053-6741
,
Myong-In Lee Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myong-In Lee in
Current site
Google Scholar
PubMed
Close
,
Ki-Hong Min Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, South Korea

Search for other papers by Ki-Hong Min in
Current site
Google Scholar
PubMed
Close
,
Sang-Yoon Jun Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Sang-Yoon Jun in
Current site
Google Scholar
PubMed
Close
, and
Yonghan Choi Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Yonghan Choi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

South Korea’s heat wave events over 39 years (1980–2018) were defined by spatiotemporal criteria, and their quantitative characteristics were analyzed. The duration and intensity of these events ranked highest in 2016 and 2018. An examination of synoptic conditions of heat wave events in 2016 and 2018 based on a reanalysis dataset revealed a positive anomaly of 500-hPa geopotential height, which could have induced warm conditions over the Korean Peninsula in both years. However, a difference prevailed in that there was a blocking high over the Kamchatka Peninsula and a continental thermal high over northern China in 2016, while the expansion of the western North Pacific subtropical high was mainly associated with 2018 heat wave events. Numerical experiments using the Weather Research and Forecasting (WRF) Model were conducted to 1) evaluate how distinct meteorological characteristics of heat wave events in 2016 and 2018 were reproduced by the model, and 2) investigate how they affect extreme temperature events. Typical synoptic features of the 2016 heat wave events (i.e., Kamchatka blocking and continental thermal high) were not captured well by the WRF Model, while those of 2018 were reasonably reproduced. On the contrary, the heat wave event during late August 2016 related to the Kamchatka blocking high was realistically simulated when the blocking was artificially sustained by applying spectral nudging. In conclusion, the existence of a blocking high over the Kamchatka region (i.e., northern Pacific region) is an important feature to accurately predict long-lasting heat waves in East Asia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong-Hyun Cha, dhcha@unist.ac.kr

Abstract

South Korea’s heat wave events over 39 years (1980–2018) were defined by spatiotemporal criteria, and their quantitative characteristics were analyzed. The duration and intensity of these events ranked highest in 2016 and 2018. An examination of synoptic conditions of heat wave events in 2016 and 2018 based on a reanalysis dataset revealed a positive anomaly of 500-hPa geopotential height, which could have induced warm conditions over the Korean Peninsula in both years. However, a difference prevailed in that there was a blocking high over the Kamchatka Peninsula and a continental thermal high over northern China in 2016, while the expansion of the western North Pacific subtropical high was mainly associated with 2018 heat wave events. Numerical experiments using the Weather Research and Forecasting (WRF) Model were conducted to 1) evaluate how distinct meteorological characteristics of heat wave events in 2016 and 2018 were reproduced by the model, and 2) investigate how they affect extreme temperature events. Typical synoptic features of the 2016 heat wave events (i.e., Kamchatka blocking and continental thermal high) were not captured well by the WRF Model, while those of 2018 were reasonably reproduced. On the contrary, the heat wave event during late August 2016 related to the Kamchatka blocking high was realistically simulated when the blocking was artificially sustained by applying spectral nudging. In conclusion, the existence of a blocking high over the Kamchatka region (i.e., northern Pacific region) is an important feature to accurately predict long-lasting heat waves in East Asia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong-Hyun Cha, dhcha@unist.ac.kr
Save
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217223, https://doi.org/10.1256/wea.74.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF Model for regional climate modeling. J. Climate, 25, 28052823, https://doi.org/10.1175/JCLI-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., and D.-K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, https://doi.org/10.1029/2008JD011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., C.-S. Jin, and D.-K. Lee, 2011a: Impact of local sea surface temperature anomaly over the western North Pacific on extreme East Asian summer monsoon. Climate Dyn., 37, 16911705, https://doi.org/10.1007/s00382-010-0983-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., C.-S. Jin, D.-K. Lee, and Y.-H. Kuo, 2011b: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res., 116, D10103, https://doi.org/10.1029/2010JD015069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., and Coauthors, 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pac. J. Atmos. Sci., 52, 139149, https://doi.org/10.1007/s13143-016-0015-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, N., and M.-I. Lee, 2019: Spatial variability and long-term trend in the occurrence frequency of heatwave and tropical night in Korea. Asia-Pac. J. Atmos. Sci., 55, 101114, https://doi.org/10.1007/s13143-018-00101-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, N., M.-I. Lee, D.-H. Cha, Y.-K. Lim, and K.-M. Kim 2020: Decadal changes in the interannual variability of heatwaves in East Asia caused by atmospheric teleconnection changes. J. Climate, 33, 15051522, https://doi.org/10.1175/JCLI-D-19-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., A. Robinson, and S. Rahmstorf, 2013: Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118, 771782, https://doi.org/10.1007/s10584-012-0668-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K, S. Yang, A. Lin, C. Li, and C. Hu, 2019: Unprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST mode. Atmos. Ocean. Sci. Lett., 12, 246253, https://doi.org/10.1080/16742834.2019.1605807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., W. Qian, and Z. Yan, 2010: Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol., 30, 14521462, https://doi.org/10.1002/joc.1989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdenebat, E., and T. Sato, 2016: Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett., 17, 135140, https://doi.org/10.1002/asl.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., J. M. Arnott, and F. Chiaromonte, 2006: Evaluation of operational model cyclone structure forecasts during extratropical transition. Mon. Wea. Rev., 134, 30543072, https://doi.org/10.1175/MWR3236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and M. R. Marinucci, 1996: A investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon. Wea. Rev., 124, 148166, https://doi.org/10.1175/1520-0493(1996)124<0148:AIOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, https://doi.org/10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 21742187, https://doi.org/10.1175/2010MWR3080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and E. Kalnay, 2002: The 1998 Oklahoma–Texas drought: Mechanistic experiments with NCEP global and regional models. J. Climate, 15, 945963, https://doi.org/10.1175/1520-0442(2002)015<0945:TOTDME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Climate Res., 63, 249266, https://doi.org/10.3354/cr01292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., N.-X. Thanh, Y.-H. Kim, and J.-B. Ahn, 2019: 2018 summer extreme temperatures in South Korea and their intensification under 3° C global warming. Environ. Res. Lett., 14, 094020, https://doi.org/10.1088/1748-9326/ab3b8f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765778, https://doi.org/10.1007/s00382-015-2869-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-W., R. C. Deo, J.-H. Chung, and J.-S. Lee, 2015: Projection of heat wave mortality related to climate change in Korea. Nat. Hazards, 80, 623637, https://doi.org/10.1007/s11069-015-1987-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., D. Yoon, D. H. Cha, Y. Choi, J. Kim, and S. W. Son, 2019: Impacts of the East Asian winter monsoon and local sea surface temperature on heavy snowfall over the Yeongdong region. J. Climate, 32, 67836802, https://doi.org/10.1175/JCLI-D-18-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-K., J.-S. Oh, C.-K. Park, S.-K. Min, K.-O. Boo, and J.-H. Kim, 2019: Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea. Int. J. Climatol., 39, 11661180, https://doi.org/10.1002/joc.5869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kysely, J., and J. Kim, 2009: Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave? Climate Res., 38, 105116, https://doi.org/10.3354/cr00775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, J., 2003: Record heat wave in Europe takes 35,000 lives: Far greater losses may lie ahead. Plan B Updates, Earth Policy Institute, http://www.earth-policy.org/plan_b_updates/2003/update29.

  • Lee, H. D., K. H. Min, J. H. Bae, and D. H. Cha, 2020: Characteristics and comparison of 2016 and 2018 heat wave in Korea (in Korean). Atmosphere, 30, 115, https://doi.org/10.14191/Atmos.2014.24.1.001.

    • Search Google Scholar
    • Export Citation
  • Lee, M., D. H. Cha, J. Moon, J. Park, C. S. Jin, and J. C. Chan, 2019: Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall. Atmos. Sci. Lett., 20, e939, https://doi.org/10.1002/asl.939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., P. Ye, Z. Pu, J. Feng, B. Ma, and J. Wang, 2017: Historical statistics and future changes in long-duration blocking highs in key regions of Eurasia. Theor. Appl. Climatol., 130, 11951207, https://doi.org/10.1007/s00704-017-2079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., A. D. Jensen, I. I. Mokhov, A. V. Timazhev, T. Eichler, and B. Efe, 2019: Changes in global blocking character in recent decades. Atmosphere, 10, 92, https://doi.org/10.3390/atmos10020092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503, https://doi.org/10.1126/science.1093877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, C., Y. Xu, Q. Li, Y. Ma, Q. Feng, W. Ma, J. Pan, and K. Li, 2020: Analyses of observed features and future trend of extreme temperature events in Inner Mongolia of China. Theor. Appl. Climatol., 139, 577597, https://doi.org/10.1007/s00704-019-02969-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Min, K. H., C. H. Chung, J. H. Bae, and D. H. Cha, 2020: Synoptic characteristics of extreme heatwaves over the Korean Peninsula based on ERA Interim reanalysis data. Int. J. Climatol., 40, 31793195, https://doi.org/10.1002/joc.6390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., Y.-H. Kim, S.-M. Lee, S. Sparrow, S. Li, F. C. Lott, and P. A. Stott, 2020: Quantifying human impact on the 2018 summer longest heat wave in South Korea [in “Explaining Extreme Events of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 101 (1), S103S108, https://doi.org/10.1175/BAMS-D-19-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mokhov, I., and A. Timazhev, 2019: Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models. Russ. Meteor. Hydrol., 44, 369377, https://doi.org/10.3103/S1068373919060013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J., D. H. Cha, M. Lee, and J. Kim, 2018: Impact of spectral nudging on real-time tropical cyclone forecast. J. Geophys. Res. Atmos., 123, 12 64712 660, https://doi.org/10.1029/2018JD028550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., T. Itoh, and T. Morimoto, 1999: Deaths from heat-stroke in Japan: 1968–1994. Int. J. Biometeor., 43, 124127, https://doi.org/10.1007/s004840050127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 45004517, https://doi.org/10.1175/JCLI-D-12-00383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate: I. An aerological study of blocking action. Tellus, 2, 196211, https://doi.org/10.3402/tellusa.v2i3.8546.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riboldi, J., C. M. Grams, M. Riemer, and H. M. Archambault, 2019: A phase locking perspective on Rossby wave amplification and atmospheric blocking downstream of recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 147, 567589, https://doi.org/10.1175/MWR-D-18-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., and T. Nakamura, 2019: Intensification of hot Eurasian summers by climate change and land–atmosphere interactions. Sci. Rep., 9, 10866, https://doi.org/10.1038/s41598-019-47291-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 16951709, https://doi.org/10.1007/s00382-018-4221-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E., M.-I. Lee, S. D. Schubert, R. D. Koster, and H. S. Kang, 2020: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett., 15, 114018, https://doi.org/10.1088/1748-9326/abbbae.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Son, J.-Y., J.-T. Lee, G. B. Anderson, and M. L. Bell, 2012: The impact of heat waves on mortality in seven major cities in Korea. Environ. Health Perspect., 120, 566571, https://doi.org/10.1289/ehp.1103759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Tang, X. Sun, J. Liu, and F. Juan, 2019: Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project. Climate Dyn., 52, 799818, https://doi.org/10.1007/s00382-018-4167-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, B.-J. Kim, J.-K. Park, J. Mao, J.-Y. Byon, R. Chen, and E.-B. Kim, 2019: Large-scale circulation anomalies associated with extreme heat in South Korea and southern–central Japan. J. Climate, 32, 27472759, https://doi.org/10.1175/JCLI-D-18-0485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. J. Zeng, K. E. Mitchell, Z. Janjić, and E. Rogers, 2001: The impact of land surface processes on simulations of the U.S. hydrological cycle: A case study of the 1993 flood using the SSiB land surface model in the NCEP Eta regional model. Mon. Wea. Rev., 129, 28332860, https://doi.org/10.1175/1520-0493(2001)129<2833:TIOLSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-J. Won, J.-S. Hong, K.-J. Lee, M. Kwon, K.-H. Seo, and Y.-G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 14631474, https://doi.org/10.1175/MWR-D-17-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S. R., S. W. Yeh, and W. S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 74987511, https://doi.org/10.1029/2018JD030170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, D., D.-H. Cha, G. Lee, C. Park, M. I. Lee, and K. H. Min, 2018: Impacts of synoptic and local factors on heat wave events over southeastern region of Korea in 2015. J. Geophys. Res. Atmos., 123, 12 08112 096, https://doi.org/10.1029/2018JD029247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, D., D.-H. Cha, M.-I. Lee, K.-H. Min, J. Kim, S.-Y. Jun, and Y. Choi, 2020: Recent changes in heatwave characteristics over Korea. Climate Dyn., 55, 16851696, https://doi.org/10.1007/s00382-020-05420-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., and Coauthors, 2020: Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 10951099, https://doi.org/10.1126/science.abb3368.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 660 0 0
Full Text Views 2319 1358 79
PDF Downloads 1052 241 27